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4.19 Blacl<body radiarton in a small caviry. consider thermal radiation in equilibrium- 
ilid;r*ii u 

"oUi" "*ity, 
Compute ihe radiation energy density in a cubic cavity

"f 
f""rU, i _ I Lrm ati : +rjO f an6 compare it with the- Planck distribution

"li"ftt?a 
by assuming that the cavity is verylarge compared to the wavelength'

4.20 Entropy oi on, phoninsfafe. From eqs' (4' 14) and (4'40)' show that the entropy'

,, of on" phonon state having a freqqency ar obeys the following relationship:

Where /6 is the Bose-Einstein distribution'

Energy Transfer by Waves

The wave-particle duality of matter from quantum mechanics implies that energY calners

For example, a Dhonon wave at

159
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understanding

the other waves
however, we seldom consider the

as whv can we
waves.

these questions and brieflY discusses transPort in the
so?

coherent regrme.

5.'l Plane Waves

When throwing a stone into water, one can obserye a concentric wave

outward. Television antennas emit electromagnetic waves that are

spherical. Rather than considering these nonplanar waves' We will carrY out most. of

our discussion in this chaPter on the basis of Plane waves' although the Phenomena

be discussed also exist for other forms of waves such as the cylindrical or

waves.
fixed time. These waves must satisfY the

the
governing their motion. Later, we will discuss these governrng equations, such as

Maxwell equations for electromagnetic waves' Before getting into these details, let's

examine some common forms' of plane waves For examPle, in chaPter 2, we

that the wavefunction of a free electron rs (2.34)l

V(x, r) - !rr-i(at-kx) * tr'-i(at*kx)

the positive ;r-direction
because

are

We can exPress a

as
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identical to eq. (5.2) and we thus expect that the solution to a physical problem will be

the imaginary part of the complex variables used in solving the governing equations.
In the following sections, we will examine three types of waves: the electron wave

as a material waves, the electromagnetic wave governing the radiation transfer, and the

acoustic wave representing lattice vibration.

:"
5.1.1 Plane Electron Waves

In chapter 2, we dealt extensively with electron waves in planar geometries, such as free
electrons and electrons in a potential well. The wavefunction of a plane electron wave

lropagating along the positive x-direction is

tlr(r, t) : A expl-i(art - kx)) \/ (5.4)

From the schrcidinger equation, we obtained in chapter 2 the following dispersion
relation between the electron energy E and wavevector ft

2m(E - U)
(5.s)

where u is the electrostatic potential. The particte current (or flux) can be calculated
from [eq. (2.31)l:

F(r,r)-61in(rt-krr)

F(t, r) = Aexpl-i(arr - k' r)]

(s

(s.6)

As we will see later, this flux expression is similar to the Poynting vector that represents
the energy flux of electromagnetic and acoustic waves.

5.1 .2 Plane Electromagnetic Waves

this section, we will introduce the Maxwell
electromagnetic waves. We will show that

equations that govern the propagation
a plane wave of the form of eq. (5.3)

$gtisfies the Maxwell equations and discuss how to calculate the e.nergy flux of the
waves..

C-l : Vm- l, and a rnagnetic.field vector H [C m-l s- :Am l. When the
fleld interacts with a under the force of the and

and of the into motion. These
own electric and fields that

example,
electrons of an atom under an external field will be deformed from the original

condition, forming an electrical dipole.* A measure of the capability of
the material to respond to the incoming electric field is the electric polarization per unit

*A dipole is a pair of positive charge Q and negative chwge -Q, separared by a small distance a. The

t: fiwvu* - \y*vw) : *" [f*o*-]

can write F as

When using such a comPlex

(s

or srne

of

For examPle, the part of F in eq. (5.3) moment of the pair of charges equals p = Qa.



P = eoXE

yolume,oithe dipole mament oerinrtvofumeP lC m-21, which is related to the electric

field through the electric susceptibility X,

where es is the vacuumpermittivity, eg : 8.85 x 10-12 [C2 N-l rrt-Z : F m-1], and the

electric susceptibility is nondimensional.
by the electic dis-placernent D [C m-2], which is a
from the external electric field and the electric polarizatign,

where e is called the electrical pennittivity of the medium.
The electron and ion motion in a medium also induces a magnetic field, which is

B: ttII

where pl is the In vacuum and in most materials, lL: LtO:4r
lo-7 Ns2 :Hm-

with
The electric polarization are most

the distortions of electrons bound to ions

:6"8

where o, [C2 N-l m- I s-l - Q-l m- I ] is the elg9tncll condltElx !D,
The propagation of an electromagnetic wave is governed by the following

oquqtions:
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see later. The Maxwell equations govern the propagation of all electromagnetic waves,
including, for example, the signals of cellular itton"r, radios and televisions, lasers,
Iight, thermal radiation, and X-rays, despite the fact that these waves are generated by
different sources. The differences between these waves, in terms or piofagation, ar!
mainly the wavelength.

we will next derionstrate how to derive a wave type of equation for the electric field.
B1t taking the curl of eq. (5.1 1), we get

vxvxE:-:(vxB) (5.15)
' El'

The left-hand side can be manipulated using the vector identityj

V x V xE: V(VrE) _ V2E (5.16)

For a region free of electrical charge, eq. (5. 1 3) leads to

We should mention that the second of the above equations is based on the assumption that
the dielectric constant e is independent of space, which is not the case for the photonic
trystal that we discussed in chapter 3. substituting eqs. (5.16) and (5.17) into eq. (5.15)
and using B : trr,H [eq. (5.9)] yields

i' 
-v2r: -p*1v H1 (5.1s)'Er'

To eliminate H, we substitute eq. (5.12) into the above equation and utilize eqs. (5.g)
and (5.10),

3t
AD' V x H = I *J,
At

V CD: Pe

VrB:0
I where p, is the net char. ge density [C m-3]. Equation (5.1l) is the Faraday law,

states that a changing magnetic field induces an electric field. Without the first term
the righlhand side, eq. (5.12) is theAmpEre law, which says an electric current
a magnetic field. Maxwell's (1831-1879) ingenuity lies in the first term of the
hand side of eq. (5:12), which represents the current due to electron oscillation
the ion even though the electrons are not free to move. This additional term,
places the electric and the magnetic fields at similar positions with respect to time
space, and endows the electromagnetic field with a wave type of behavior, as we

(s.l e)

E0 represents both the amplitude and direction of the elecfric field. Substituting
(5.20) into eq. (5.19), we obtain

(s.21)

(s.22)

(5.

(s.

YzE: p,e
a2E

av

,6':es (1 +il*io"fo,N: (s.23)
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and 6, - 3/e6 is called the function. Neither N

e, is reallY a constant, as their names suggest, because they are dependent

length. Studies on the wavelength dependence of the dielectric function can'

insights into the material constituents and energY states. For example, some

and phonon states can be identified from measuring the dielectric function or

refractive indices. There exists a large librarY of complex refractive indices of
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Now let us see how we can calculate fhe energy flow associated with electromagnetic
fields. We start by manipulating the Maxwell equations. Taking the dot product of H
with eq. (5.11) and the dotproduct of E with eq. (5.12), then, subftacring the resulting
two equations, we get

where fi. is the unit vector along the wavevector direction. With the electric field

mined, the magnetic field can be computed according to eq.(5.1 l). Onecan further

that the wave rs a wave. and that the electric and

fields are perpendicular to each othor:

EIHIK

In the special case that a plane wave is traveling along the x-direction with the

and magnetic fields pointing in the y- and e-directions, resPectivelY, the electric

-vo(E xH) : *()-".H+)eE n) +n.1, (s.30)

where we have used the vector identity, V . (E x H) : H r (V x E) - E r (V x H) We
identify the meaning of each term on the right-hand side of eq. (5.30) as

Magnetic field energy density [J m-']

Electric field energy density U m-31 :

Joule heating [W --3] ,

To see what E x H means in eq. (5.30), we integrate the equation over a volume,

- Iil Vr(ExH)dv

and rewrite the left-hand side into a surface integral, using Gauss's theorem,

\i :IIIl*()^.n+i,n.r)+n.t,]av (53t

where the surface integration is carried out over the surface enclosing the volume and
i is the local noimal of the surface, pointing outward. The right-hand side of eq. (5.35)

Ha1t'H
I
,
I
,
E

(s.31)

(s.32)

(5.33)

r^IE
N:./-:Jer:il*LK

Yeo

dielectric constant or dielectric

(Palik,1985).'- i"tJ*ri"g eq. (5'22) into eq' (5'20), we see that the electric field of a

electromagnetic wave canbe expressed as , 
,

magnetic fields can be exPressed as

r / Nx\l^
Ey : Eynexl 

f-io \t * * /lt

eErE

.J"

where the minus and plus signs represent waves propagating in the Positive

-r -direction, resPectivelY Substituting eqs. (5:27) and (5.28) back into

equation (5.11), we can see that the electric and the magnenc fields are related:

iepresents the rate ofchange ofthe stored electromagnetic energy inside the volume plus
heat generated. The first law of thermodynamics requires that this must be supplied

energy flow into the volume across the boundaries, hence the left-hand side must
energy flow. Because ofthe negative sign and the fact that ff points outward, the

product E lH must We call this
the Poyntins vector S fW

(s.36)

Poynting vector represents the

Currently, no electronic devices can measure
signal.

. t+T

(s):1 [to,'TJ
t

:ExH

where the plus and minus signs correspond to those in the exponential factor

(s.37)
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If the complex representation of E and H is used, as is the case most of the time, it cein

be shown that the time-averaged Poynting-veclor can hp calculate$from

where the subscript c is used, only in this equation, to emphasize tle complex repre-

sentation of E and H, and the superscript * means the complex conjugate.

we use the complex representation most of the time, we will drop the

whenever it is clear, as we have been doing so far. The time-averaged

vector expression, eq. (5.38), is similar to the particle flux expression, eq.

quantum mechanical waves. As we move on, we will see more similarities

these waves.

. As an example, we consider a plane wave propagating in the positive.r-direction

given by eqs. (5.27) and (5.28). The corresponding Poynting vector is

where .l.s is the wavelength in vacuum and we have used eq. (5.29) to teplace Hro

by Ero,and

4nra:-lm-'J

is called rhe absorption cofficient.. Its inverse, 6 : If a, is called the skin

Equation (5.39) shows that as the electromagnetic field propagates, the energy

exponentially. The skin depth is where the energy flux has dropped by ,-r'
r - 0.1, the skin depth is of the order of one wavelength l.s. For optical fibers,

a low absorption coefficient is essential. For a 6 - 1000 m and .)'s : 1.55

which is the wavelength used in long-distance optical communication, r, must be

than 10-10. For metals, r is usually large in the range from visible to far infrared,

thus electromagnetic fields usually do not penetrate far into metal,

In closing this section, we comment further on the relationship between E, H, and

Equation (5.26) says that they form an orthogonal set. Usually, it is further

that this set follows the so-called right-hand rule: with the right hand fully extended

the thumb perpendicular to the four other fingers, close the hand by tuming the
1,.
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fingers, which originally pointed in the E-field direction, toward the H-fierd direction;
the thumb then poinrs in the k-direction. In arrificiat mat";ats'with il;;;;"e e and
negative pc, however, the Maxwen equations actuany require that E, H, uiJ t rono*
the left-hand rule (veselago, 196g). such reft-handeo materiats *"y h;u; in;rrfir;
properties such as negative-refractive index arising from taking the negati-ve root of
eq. (5-21), and could focus light to a spot much srnaller.than thl *uu.t"'ojt @endry,
2000; Shelby et al., 2001).

subscript c

between

wirh

'tensor,

5.1.3 Plane Acoustic Waves,

of the localmedium
or, more often,

(s.4t)

can be related to the strain where the "=" above the symbol
means that it is a terlsor, represented by a (3 x 3) matrix with
9 components, Sii (i, j : 1,2,3), calculated from

(s.42)

The strain can be further related to the is again a second-rank
The force acting on any surface with a norm

o r fi, where the product of a tensor with a vector is carried out using thefollo@frffi producr rule:

(fr): E u Aka)
. (s.43)

Using eqs. (5.41)-(5.43) and Newton's
the stress tensor and displacement can be

;displacement velocity. The acoustic wave

secondlaw of motion, a relationship between
obtained and finally expressed in tprms of the
equations thus obtained in their general form

medium with damping (Auld, I990), becausqthe
very complicated in an anisotropic

both are fourth-rank tensors with
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8 1 components, although sYmmetrY requirements render many of the matrix

to be zero. We will not list the acoustic wave equations but focus onlY on the

which

for the sffiness These two constants' denoted as lr and

case, the acoustic wave equations

particular, the form v

where /c is the magnitude of the wavevector and is the unit wavevector,

wave equations lead to the following eigenvalue equation (Auld, 1990)
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where eq. (5.49)^defines a transverse acoustic wave with displacement direction 6

perpendicular.to k, and eq. (5.50) denotes another transverse acoustic wave with dis-

ilu""*"nt normal to both 6 and [. Based on the displacement velocity, components of
the stress tensor can be calculated from

cll cl2
cL2 cll
crz cL2

00
00
00

3u" / Ex
3u, / 0y
0u"l0z

1ur/02 -l 0u"/0y
0u,/62 { lur/0x
3u,/0y * Iuy/0x

ctz
ct2
c11

0
0
0

00
00
00
c44 0
o c44

00

(5.s2)

f ,rrft'? + pL$ -e)o'l fi'r+rrt)ftyft,
I trr t pDk,k*

(xy I p.)ft.afr:y Qq + uilk^,\, I

c1ftj + pLQ^-^i4) Q'7 * p')kvk, 
I

1iy + p.21i:,ic, ,sE! + pLQ - k? J

where u7 : 1'ttlilrlz is the velocity of the wave' There

vibrating in the y-direction since the mediumis isotropic'

phonons- in three-dimensional crystals on the basis of

A longitudinal wave that vibrates along the z-direction'

where c11 - )'y | 21.t7

a and

Consider a plane transverse wave propagating along the z-direction and vibrating

the .r-direction,

Y7 - rt72-i(at-k7z)i

Substituting eq. (5.45) into (5.44) leads to the following solution

P'Lk| - Pa2 or ot = urkr

is an identical fransverse

whete cp - ),1 and c44 : I.LL. Equation (5.52) is a form of the Hooke law for an

isotropic medium without damping. The symmetry relations oay = dyxt oyz : oz!,
andorr: ozx can be used to obtain all nine components of the second-order stress

tensor.

lwm-21

(5.53)

The above discussion on acoustic waves and electromagnetic waves is clearly very
Sketchy and also mathematically involved. The main purposb is to get the readerfamiliar
with the plane waves propagating along an arbitrary wavevector k direction,. as repre-
sented by eq. (5.3) and the flux carried by the plane waves. In the next section, we will
examine how these plane waves behave at an interface.

5.2 lnterface Reflection and Refraction of a Plane Wave

When a wave, be it an electron, photon, or phonon wave, meets a boundary, it will be
_r"eflected and refracted. In this section, we will determine how much of the mcouung
wave is reflected and how much is refracted, by imposing boundary conditions for these
waves. The reader will find that although the electron, photon, and phonon waves are

different

5.2.1 Electron Waves

At an interface between two materials, an electrical potential generally exists as shown
figure 3.28. We examine

Although the more general
of a wave with any arbitrary angle of incidence can be treated, re_fo."r-_g$

the e-direction.

as is the case when we

lattice-dynamics

also satisfies eq .(5.M).Substituting eq- (5'47) into (5'44) yields the followillC

relatisn

kzr'11 : Poz or ?: "i'

t71 - iAyg-i(at-k7t:'r), (6' t : O1

-i(o;t:k1*'or) that is, when the wave is traveling along
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Symbol Convention:

Q Field Going Out of paper

@ fieta Going Into paper

E-Field In the Plane oflncidence:

. TM Wave = // Wave: p Wave

H-Field In the Plane oflncidence:

TEWave:IWave=sWave

POTENTIAL

X
------------+

Y.

{-
Y,

The wavefunctions of the incident, v;, the reflected, vr, and the transmitted waves vr,
can be expressed as

. Vi : Are-i(tot-hz),Vr: l.rs-i(ar*krz),1y, : Ate-i(@t-k2z) (5.54)

where k1 and k2 are the electrod wavevectors in the two media, respectively, and

5 -2.2 Electromagnetic Waves

The reflection and refraction of light at an interface is a more familiar process for many
' readers, and shares many similarities to'the behavior of electron waves at an interface.

Although we considered only the case of normal incidence for electron waves, we will
treat here the more general case ofoblique incidence of an electromagnetic wave onto
an interface. As shown.in figure 5.2, a plane electromagnetic wave propagates along
direction k; (wavevector direction) and meets an interface with nornff.-The reflected
wave and refracted wave propagate along the k, and kl directions, respectively. we call
the plane formed by k; and ff the plane of:incidence, and the angle formed between ff and
k; the angle of incidence. The electromagnetic wave is a transverse wave, so the E-field
and the H-field can have any orientation in the plane normal to k. w€ can decompose
the electric field into two components, one parallel to the plane of incidence and the
other perpendicular to the interface. When an electric field is parallel to the plane of
incidence, as is the case of figure 5.2, it cannot be parallel to the interface unless the
angle ofincidence is zero. Its conjugate magnetic field component, in this case pointing
out of the paper, is perpendicular to the plane ofincidence and is thus always parailel
to the interface. This wave is called a transverse magnetic wave, or TM-polarized wave.
Sometimes the notations p (parallel polarized) and / (relative to E) are also used. If the
electrical field component is perpendicular to the plane of incidence, the wave is called
a transverse electric wave or TE-polarized. Notations TE, s (perpenclicularty polarized),
and r are often used interchangeably. we will limit our discuision to positive media,
that is, those with refractive indices of the form of e q. (5.24) for which E, H, and k obey
the right-hand rule.

Figure 5.1 Reflection and transmission

of an electron wave at an interface'

caused bY the Potential barrier
at the interface.

2m (E - Uo)

h2

These wavefunctionshave been obtained in sections 2'3.1 and3.Z.I' Using the boundary

conditions on the continuity of the wavefunction and its first-order derivative, similar to

eqs. (3.25) and (3.26), we obtain the reflection and

E. 6E, = E, kt: 
l-nz 

,

f:*:mand':x:#"
The of the

R:+:lml'

Er

n

are-feflesteL(total reflection). In this case, h.orcv€Llhe-Jilavsfunstion-gis,noraero;
as one can easily show by substituting kz from eq. (5'55), which

@E-< Uo.intoeq. (5.54)

from the

rtgys.-.which will be discussed in section 5'4.

mundane daily analogy, this means that if one throws a stone at a wall, there is some
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Weneedtoestablishboundaryconditions.for.theelectricandmagneticfieldsto
determine the reflection ;J;;;*ttion at the interface' By applying the Maxwell

equations to a very ttrin contiol *;;; *ttgunding an interface' the followin gboundary

,iri.n mtcan be obtained (Born and Wolf' 1980)

fir(D2-Dt)=P'
ff"({r-gt;:0
ff.(Bz-81):0

ffx(IIz-H1):J5

where p, [Cm-21 and J" [A m-11 are the net surface charge density and the surface

current densitY, resPectivelY, E1 and E2 are the total electric fields on the two sides

of the interface, and similarlY H1 and H2 are the total magnetic fields on the two sides

of the interface. To obtain the "total" EandH for side 1 of figure 5.2, we need to sum up

the incident and the reflected flelds' Equation (5.58) means that the difference between

the normal comPonents of the electric disPlacements across the interface must be equal

to interface charge densitY, while eq. (5'59) means that the tangential comPonents of

elecfic field must be continuous' Equation (5 .60) saYs that the normal

the magnetic induction must be continuous; while eq (5.61) means that the

of the tangential components of the magnetic field across a surface equals the

cunent densitY

With the above boundary conditions, we can determine the amount of

and transmission of an incident electromagnetic wave onto a surface. We

I a plane TM wave incident onto a surface at an incident angle 0i. The

directions of the incident' reflected, and transmitted waves are

(singr, 0, -cos0r), and (sin01, 0, cos0s)' respectivelY. Using a

form of eq. (5'25)' the incident, reflected, and transmitted electric fields'can

expressed as

singi * nlzcos9i

(
n1.Jc sin9, - ntzcos0/

. Elr exP

f / ncx singt - n2e cos dl \l
Er,exDl-t.,lt--= . r, 

- 
))'' ^L \

respectivelY' Here, we temporarilY assume that the refractive indices

subscript 17 " means that the electric field is polarized Parallel to the Plane

(TM wave as shown in figure

Some readers maY ask how to determine the direction of E, and IIt

The answer is that a correct assumPtion of the direction is not important as

E, and II, follow the right-hand rule. The signs in the final results will

the directions. Notice the sign change in eq' (5.63) before z in the exPonent due to

(s.58)

(s.se)

(5.60)

(5.61)

comPonents
difference

reflection

(sin9;, 0, cos0;)'
plane wave of the

are real.

in figure
long as

take care
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change in the wave propagation direction for the reflected wave. Based on a similar
derivation of eq. (5.29), the magnitude of the magnetic field, which is pointing out of
the plane of the paper, is related to the electric field by

nr: lzx(forward), Hr: - 
n Ez(backward) (5.65)' lrco pco tt'

where the "forward" denotes waves propagating along the positive e-direction (incident
and refracted waves) and "backward" applies to the reflected wave propagating along
the negative e-direction, the subscript'iy" of H denotes that 11 points perpendicular
to the plane of incidence, in the y-direction, and E1 is the magnitude of vector E77.

In figure 5.2we show the reflected magnetic fields'pointing into the paper because
of the negative sign in eq. (5.65) for the reflected wave. In reality, the actual sign
change may be in the reflected electric field rather than the magnetic field. As long
as one is consistent with the mathematical operations, the end result will give the
correct sign.

we consider a surface free ofnet charge and current, and take this surface os z : 0.
To determine the magnitudes ofthe reflected and refracted.fields, we need consider only
the continuity of the tangential components. The boundary conditions on the normal
components will be automatically satisfled. Applying the continuity of the electric field,
and noting that the electric field of a TM wave is not perpendicular to the surface, we
use the component along the -r-direction

"oue,E11,*n firlll$-Lf + *r+rx,*n [rr1\*
: coset E //t exp

. n2x sin01

co

where we have dropped the factor of e-iat since it is contained in all the terms and
cancels out. Since x can take any value, the above equation is valid only when the
exponents are equal. This gives

n1 sind; : nLsinflr : nzsin0t

which leads to the Snell law for reflection and refraction

0r :0, and n1 sin 0i : nzsin gt

Substituting eqs. (5.67) and (5.68) back inro eq. (5.66) leads to

. cos2;Eli l cos0;E17 : cosfiEflt

can write the continuity of the tangential component of the magnetic field,
(5.61), as

(s.68)

(s.6e)
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-n2 cosg; * nl cos0,
rI: nzcosei * nl cos 01

2n1cos0;
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Similarly, for a TE wave'

n|cosei * nt cos

cosg; - n2cos01

01n1cos9; +nzcos

2n1cos0; (s.74)

nlcos0i +n2cos et

Equations (5'71)-(5.?4) are called the Fres;ne:I coeffi;ients of reflection and

indices for both media. Ifglgljbe
one can

This statement can raise questlons For examPle, the Snell law becomes

nl sin It Nz sin 0r. If 1S the of refraction is also

What does a complex angle mean? To answer this questron'
and see that in this case

into the transmitted wave
a

yaYeJhe Proof is left as an exercise.

The Fresnel coefficients give the magnitudes of reflected and transmitted fields'

calculate the flux across the we to

vector. For a TM wave, we have

Transmissivitv r ,,, - !-/!J''- - 
s//' : Re(NJ cos4) 

,r,,'" S11i,z S//i Re(Nf cosg;) I'l/l

Re(.|y'c cos d.)
" t^ tzcr - F;d-;;at prr

Equations (5.75) and (5.76) apply to the cases when either or both of the two media
are absorbing When medium I is non-absorbing, it can be shown that

*z:1 (5'77)

for both rM and rE waves. However, when medium I is also absorbing, it can be shown

, that the above intuitive expression is no longer valid. This is because of the interference
ofthe incident and reflected waves (Knittl, 1976).

At normal incidence, the reflectivity can be simplified to

R : R!//: Rr : l\*f :l!: . "'l' : \", - "):* rt, - 
*'r=^ 

(5.7s)lhtkzl lNz+ntl (nztniz *(rcz*rc)2

which is identical to eq. (5.57) for the reflectiviry bf an electron wave. For an airlglass
interface, wheren : l forairand n x 1.45 forglassbetweenl:0.5 and0.6 pm,
the reflectivity at normal incidence is -3.4vo. For an airlsilicon interface (n for si a: 4
between.l. : 0.5 and 0.6 pm), the reflectivity is - 36Vo at normal incidence.
' In figure 5.3, we show the reflectivity for typical dielectric and metallic materials as
h function of the angle of incidence. The figuri shows that the reflectivity depends on
the polarization ofthe incident radiation. The reflectivity for a TM wave can be 2ero for
dielectric materials. From eq. (5.71), this happens when the numerator equals zero, that

til: E//,
Elti

(s.71)

(5.72),

(s.73)nlrL=

tI:

0.8

0.6

o-4: 
fi6ui,sing 

i* ffinllcose;t
: (sr)i + (sr)i o.2

z-direction goes across the interface, we define

ntt : Y*-- 
!t:- =1111f I

R1 : lrllz l

,i ,-

,t t.

\ \
Dielectric material (n= , TMf r _ Brewster I

Gold (wavelength=10 pm, TM)

I

t
I
I
I
,

Since onlY the comPonent in the
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the TM mode is zero'

tan 0g : n2f n1

This angle is called the Brewster angle. At this angle, onlY TE waves are reflected.

phenomenon can be exploited to control the polarization of white light and is also the

cause of shinY dark (seeminglY wet) surfaces on the freewaY on a sunny day.

Another interesting situation 1S when the refractive index of medium 1 (inci-

dent side) is larger than that of medium 2. Because the maximum angle of

refracted wave is 91 90o, there exists an angle of incidence above which no

real solution for 0r exists' This critical angle happens when' according to

Snell law,

nr sing" : n2 sin90o ot 0, : ucsin(n2f n)

Above this angle, the reflectivitY equals one; that is, all the incident energY is reflected.

This is called total intemal reflection and is the basis of waveguides that confine

photon waves laterally, as in an optical fiber and a semiconductor laser' An optical

fiber has a core region and a cladding laYer [figure 5.4(a)1. The refractive index in

core region is higher than in the cladding laYer. If light is launched into the fiber at

angle of incidence (relative to the eore/cladding interface) larger than the critical

rhe light will be bounced inside the core only without leakage, thus travelhg a

distance along the fiber if the absorption coefficient of the core rs small. However'

the angle of incidence is smaller than the critical angle, the light can escape

core, In a semiconductor laser, light is emitted through electron-hole

inside the active region' The emitted light sPreads over the core region and is

by cladding laYers that have a lower refractive index than

mentlon here, however, that even though the reflectivitY

'zero for a wave incident above the critical angle, there is still a nonzero

Electrode

Wells
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wave in medium 2. This is calledthe evanescent wave, similar to the evanescent electron
wave we mentioned in the previous section. We wjll discuss the evanescent wave in more
detail in section 5.4.

Example 5.1

A 0.5 W laser with a beam diameter of I mm and wavelength 0.5 pm is directed at
normal incidence to a piece of aluminum. The complex refractive index of aluminum
at 0.5 pm is 0.769 + 16.08. Determineihe distribution of hear generation inside the
aluminum.

Solution: From eq. (5.39), we know that the Poynting vector, thus the intensity of
the laser beam, decreases exponentially inside the film. The distribution of the laser
intensity can be expressed as

/ : (l - R)I;e-dxlWm-21 (Es.l.l)

where x is the coordinate perpendicular to the surface, R is the reflectivity, and a
the absorption coefficient. The decrease in intensity is converted into heat. So, the
heat generation distribution is

dI
q : _;: (l _ R)alie-da [Wm-3]

We can calculate R and a as

l1-N12 lo.z3t-6.osiPft-l_l:! I :oq??ll+Nl lt.i6e+6.0811 -"*

4rrc 4n x 6.08q: -l- l 0.5x10-6m

Substituting these values and [ - 0.5 W/(z x O.0Ol2 /4) : 6.34 x lOs
Wm -2 into the heat generation distribution expression leads to the final

(E5.1.2)

(E5.1.3)

answer.as

4 :7 .5 * 1gr2 ,-ax [W rn-3] (Es.1.5)

Comrnent. Because c is very large, heat absorption occurs only in the region near
the surface.

With the expression for the surface reflectivity and transmissivity, the emissivity
bf the surface at the same wavelength can be readily calculated. If medium 2 is
semi-infinite, the energy transmitted into the medium will eventually be absorbed

thus the absorptivity equals the nansmissivity at the interface. From Kirchoff's
the emissivity equals the absorptivity at the same incident direction and the same

nonzero transmissivitY.
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5.2.3 Acoustic Waves ., 1

The reflection and refraction of acoustic waves can be treated similarly to the

electromagneticwaves.Thecontinuityrequirementsforacousticwavesarethatthe
oitpL."i"" velocity unoit" force at ihe interface must be continuous:

^s=^
Iv1 = f vz and f o1'ff: Lo"ff (5'81)

where ff is the norm of the interface and 6.ff is the force acting on the interface'

'as expressed bY eq. (5.43)' and the summation is over all the fields (for examPle, the

incident and reflected) on each side. While

in a lattice dYnamics simulation,

at the atomic scale. For

i[mt*mffii"**"tt wt""rtir$' In the long wavelength limit' however' the continuum

assumption is reasonable and eq' (5'81) is valid.

Using the boundarY conditions and plane acoustic waves of the form of eqs.

(5.49)-(5.5 1), one can again derive expressrons for the reflectivitY and transmissivitY

acoustic waves at an interface as for electromagnetic and electron waves. The derivation,

however, is more complex because acoustic waves have three polarizations andone must

consider the possibility of coupling among these polarizations-for example, whether

a longitudinal wave can excite a transverse component in the reflected and transmitted

waves (Auld, 1990). The

wave

the of
case, one SH

boundary conditions and following a similar procedure as for optical waves' one

derive the reflection and transmission coefflcients for an SH wave as

Zt cosOi - Z2cos01

Ztcos0i * Zzcos?t
(5.82)

U1

!s-
Ii

ZZtcos0i

21cos0; I Zzcos

where Z : (pcafillz - pu7 isthe acoustic i,mp e danc e, which PlaYs a similar role to

the optical refractive index. These equations are identical to the Fresnel coefficients of a

TE wave [eqs. (5.73) and (5.74)l with the acoustic impedances rePlacing the refractive

indices. The relation between the incident angle 0; and the refraction angle 91 is

by the Snell law, which assumes the following form for an SH incident wave:

sin 0; sin 91

On the basis of the reflection and tranmission coefficients and the acoustic

vector, eq. (5.53), one can calculate the energy reflectivity and transmissivity for

waves. At normal incidence, the acoustic reflectivitY for an SH wave is

" For airansverse wave polarized in the plane of incidence (vertically polarized shear
, wave or sv wave) and for a longitudinally polarized incident wave (L wave), coupling of

different polarizations can occur. In general, an incident wave can excite three riflected
rvaves and three transmitted waves, as shown in figure 5.5(a). Eorisotrooic media. ttr::i"oj'"TYwsothepicturereducesto5.5(b).Conespondingly,
the Snell law looks slightly different,

singi _ sil 9rr _ singrr _ sin4r _ singrr 
(5.S5)ui ULI DT! uL2 , uTz

': yhere subscripts r and r represent the reflected and transmitted components, and I and
I represent longitudinal (L) and transverse modes (SH and SV).

For isotropic media, the reflection and transmission coefficients can be found by
solving a 4 x 4 matrix equation (Auld, 1990). An example or pnonon reflectivity
and ti:ansmissivity at an interface between two isotropic meaia wittr acoustic prop_
erties similar to rhose of Si and Ge is shown in figure 5.6 (chen, 1999). It shows

MEDIUM I

Figure 5.6 phonon

MEDIUM 1

03060
tNctDENT ANGLE (DEGREE)

transmissivity and reflectivity at an interface
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0.00
90

0.20

0.

.0

UJ
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3 o.u
F

o 0.4
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similar to Si and Ge for an.'acoustic wave (incident from the Ge side) with the displacement vector polarized in the plane of

I
t

I

I

t

REFLECTIVITY

REFLECTIVITY

lz, - Zr12R,=lh+zrl
incidence (Chen, 1999), that is, an SV incident wave. Note that L waves are also excited.



Total reflection of acoustic waves can also occur and

several critical can exist, as one can infer from eq' (5.85), for refracted waves

of different Polarizations' In figure 5.6, the total reflection of an SV wave from

germanium-like medium into a silicon-like medium occurs at 33"' Above

an evanescent wave

photon waves.

exists in the silicon side, similar to the evanescent electron

5.2.4 Thermal Boundary Resistance

The reflection of waves
to the carrier flow'

and is thus

current flow,
photons,

as exemPlifled in multilayer thermal insulation materials (Tien and Cunnington, 1973

reflection of acoustic waves in a resistance to heat flow,

is well known

resistance was first discovered to exist between liquid helium and solid

(Kapitza, 1941; Swartz and Pohl, 1989). The

(b)

iigure 5 .7 (a) Transmission and reflection of phonons at an interface. (b) Coordinate system for
thermal boundary resistance evaluation. (c) Difference between the emitted phonon temperature

and the local equivalent equilibrium temperature.

in eq. (5.86), we will c]]lvgtl it into an integratiorusing the rlifferentialdeuijyd-states -

rpu4haf (a

ruEm

MMED PHONON

i1l "i::,.-r.i.

is called the KaPitza resiPtance

philomenon also occurs for two solid interfaces and was first treated theoreticallY

where lrt rePresents the temperature of the phonons coming toward the interface

-f (ar, T,r) is the Bose-Einstein distribution for phonons at Ts1, and rtz is the

transmissivitY from medium I into medium 2'

0rd0t ,O)hof (a,7")Dt

(s.87)

,where ar211 is the Debye frequency of medium I and the angles are denoted in
figure 5.7(b). We use the notation {21 > 2r to represent the half-space solid angle
toward the interface from medium l. We should point out, however, that the Debye
assumption is not really necessary for the derivation. Similarly. there exists a phonon

. heat flux from medium 2 to medium l The net heat
is the difference of the two,

flux from material 1 into material 2
written as ?no(tofi"-et Blre'E rcsl€t0

s*f . 
v 'L I

4r+2: t I * -.8- *,8* 
r&*"i"x':"-)

P:t L kansrnissto")

- I ll u2cos \2ttolf (a, r 
"2)t21(a,Qz, 

0) Dz@) /+narfaa,z (s.88)

vs_ :

we have suppressed the integration limits and used dQ : sin 6 d0 dg for
following eq. (5.87). Alllenoal

To carry out the summation over

{21>2n

so that
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Equation detailed

no net
Using eq. (5.89), we can write eq. (5.88) as

q cos?lhoslf (o, T"t)

(11>2n

Thus, with the of the
, of course, the

the calculations.
can be further written as

Te1 - Tez
q : _-_ll"
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requires that

This

(s.91

qz(a, Qr,0)Dr@)du:

pdtr't

where p, : cos I is the dhectional cosine and C - FtaD is the

(mode) spesiie-h€llt-The second equation in (5'92)
.\T

fact that

medium

because of the T3 The agreement of eq. (5.93)

results depends on how the transmissivity z is calculated. Modeling

based on acoustic wave relations such as eq. (5 .82) generally agree well with

mental results at very low temperatures, as shown in figure 5'8, and such a

called the acoustic mismatch model (Little, 1959). At higher temperatures'

the experimental results deviate from the acoustic mismatch model' This is

discussed

0.06 0.1 o.2q9 < txlt
Afewatomic

Rtz: tzt ot I - r12: t21

where the second equation comes from the energy conservation identity R12 f rtz

Figure 5.8 Thermal boundary
resistance at low temperature
(Swartz and Pohl, 1989; courtesy
of APS Associate publisher).

(s.e4)

1.recall again that subscript 12 means from medium 1 into medium 2 and vice versa.By substituting the above relationship into eq. (5.g9) and further assuming a linear
dispersion for each acoustic wave polarization, Swartz and pohl (1 989) obtained

1/u?

t/u2t + t/uZ
(5.e5)

\i;.

model wirere l/u2 comes from the product of the density ofstares teq. (3.55)l and the
relation is valid at low temperatures. At higher temperatures, a.similar treatment
to (Dames and Chen, 2004),

u2U2(7")

;i'tr;l,nru 1*[utq/uzuz]
t6e(7") -

'

U is the volumetric
! 

.elastic; that is,
conditions are

cQ)dr

rlloo o ta 
a

a
a

at
a

a 
r
I

a I

at

aa

l#j

psi
96 psi
395 psi
Solid

ll
at t

Atroom

when

at the interface

internal energy [eq. (4.73)],

(s.e6)
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Chen (1998) assumed that the specific heat is independent of temPerature and

expressed eq. (5.96) in terms of the sPecific heat' Equation (s.e6), however, is more

accurate and.includes all other simPlifled cases' including eq' (5.95). Using the

approximation, the ratio in the denominator of eq' (5.96) can be expressed as

1lr1
---;| /vi

r,f 71a,T"1da
as 71a,T"1da

the two materials are similar, aird il
the usual thermal boundarY

with
expression defined on the basis of eq. (5.e1). In this the

resistance should

one sets

in eq. (5.9 1). So far, we have been careful in saying that

This is

cannot
etal.,1977). However'

this adiabatic system and will call this temPerature the

temDeratltre, This equivalent equilibrium temPerature is reallY just a

local used
ir is

as the Fourier law. Figure

between the incomrng phonon temperature and the equivalent equilibrium

It can be shown that the equivalent temperature can be related to the incoming

qeQt)dtt'r12
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where 1t : cos d is the directional cosine and we have assumed that transmissivity is

independent of angle (D. On the basis of this equivalent temperature and the consideration

of the deviation of the phonon density of states from the Debye model, Chen and Zeng

(2001) anived at the following expression for the thermal boundary resistance:

_ztr - Ui tnQdat"t * ll4111t2)td1t2)/21 (s.101)

ft U tp Qt i urCrkidafLrrd tt r

Note that here we have dropped the subscript "e" because 1@lgpg4qpg31gdefiggd
?s a measure of the locd oming

toward the interface, as in eq. (5.91). Strictly speaking,j& rpegtral spegific heat should

be evaluated at 4 but, under the assumption of a small temperature difference, it q4n

evaluated as the of the
to zero resistance when the transmissivity

from both sides is equal to one, that is, when no interface exists. This resolves the

dilemma in eq. (5.92) that gives a nonzero thermal boundary resistance even when the

transmissivity equals one (Little, 1959). When measuring thermal boundary resistance

at low temperatures, it is possible to anchor temperature sensors so that Zrt andT e2 arc
measured, so that eq. (5.91) is a valid definition. Most measurements

' of thermal boundary resistance, however

rcsislancevahtesareobftainedonthe-basttoflhee-auivalent e:quilibriumT.Consequently,
one should pay attention tg qqing correct models to explain the experimental data.

The thermal boundarv resistance discussed here exiStsjven if the intedale isJrerfect,

as long as there exists phonon reflection at the interface. The of

(Costescu et al., 2003). Less ideal interfaces have higher thermal boundary resistances
: 

lstoner and Maris, 1993). the
seems with

For example, the thermal conductivity ln
perpendicular to the film plane is found to be dominated by the thermal

boundary resistance. It should be pointed out, however, that the value of the thermal
boundary resistance in a multilayer structure can differ from that of a single interface
(Chen, 1998). In macroscopic structures, the thermal boundary resistance at the inter-
faces can be much larger because the two materials are not in perfect contact. We will
not discuss these cases here.

5.3 Wave Propagaiion in Thin Films

Inthin films, there are multiple interfaces. We should first emphasize that these thin films
do not have to be an actual material. A thin vacuum space between two parallel plates can
be considered a thin film. These interfaces will cause the reflection of the incident waves.''ihe 

reflected waves can be superimposed on the incoming wave to cause interference
effects that lead to the thickness dependence of reflectivity and transmissivity. One
other new phenomenon that may occur in thin films is tunneling, which makes the total

(s.

I
0

temperature bY

T2:7"2*(Tet-7"2) tn1t')d'P'zl2
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reflectionphenomenonthatoccursatoneinterfacedisappear.Thes-eilgrferenceand
il;;ii;; il;;rr", can occur for photons, phonons, and electrons. In rhis secrion, we

will first examine the inlerferenc" ph"no-*on. The formulation established can also

;.;pp;;il;;n"ting pio"*,, *hitrt will be discussed in section 5'4'
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(s.105)

(s.106)

(s.107)

(s.r08)

(5.10e)

(5.1 10)

(s.1 I l)

5.3.1 Propagation of EM Waves

There are three ways to derive an expression for the radiative properties (reflectivity

and transmissivitY) of thin films: the field-tracing method, the resultant wave method,

and the transfer matrix method, as explained !n figure 5.9 The field-tracing

figure 5.9(a), follows the trajectory ofthe wave and counts each refl ection and transmis-.

sion when the wave meets aninterface (Born and Wolf, 1 980), using the Fresnel reflectiori

and transmission coefficients. This method is intuitive but cumbersome' Because all

forwarding waves in the same medium have the same exponential factor, we can

them up into one wave with a undetermined amplitude and call this wave the

wave [figure 5.9(b)]. Similarl5 all the backward proPagating waves in the same

can be summed into a resultant wave' There are then four resultant waves in

layer thin film situation, one reflected, two inside the film (forward and

and one transmitted, as shown in figure 5.9(b). The amplitude of each resultant

will be determined bY aPPlYing the boundarY conditions at the two interfaces.

transfer matrix method combines all the waves (both forward and backward) in each

medium into one Wave, and uses a matrix to relate the electric and magnetic

between two different points inside a medium, as shown in figure 5.9(c). Because the

tangential components of the electric and magnetic fields are continuous across

interface when no interface charge or interface current exists, the transfer matrix

can be easily extended to multilayers' We will therefore focus on the transfer

(s.104)

where 0z is the angle formed between wavevector direction and z. Again, ifn2 is complex,
this angle is also complex, and can be calculated according to the snell law In the above
equations, we have dropped the terms exp(-i a,t) and exp(-krr) because all terms have
these factors and eventually cancel.

we want to relate the electric and magnetic fields at any location z inside the film to
these fields at the interface z : 0. This can be realized by first taking e : o in eq. (s. t02)
and (5.103) and then eliminating E+ and E- in these equations,

. @nZZcOs9z
9k): 

-

c0

Ea(7) : E (0) cos 9(a) t ipzH (0) sin p(z)
I

Hy(z) : * E, (0) sin p(z) + 14 (0) cos p(a)
p2

where p2 : lcos?2/ (n2/ p.c)lis the surface impedance for a TM wave. The above
equations can be written in matrix form

Er(z) : cos 028* si:vQ) I cos 028- s-ivk)
n1

Hn(z) = !'2-16+ rivQ) - E- eiek)l
" Itco

(5.i02) Equation (5.108) relates the electric and magnetic fields inside'the film at z - d to
their values at the boundary e 0. To find the reflectivity or transmissivity, we need to

relate them to the fields outside the film thiough the boundary conditions. For a
free of charge and current, eqs. (5.58) and (5.61) dictate that the electric and
fields are continuous, which means that at e : 0,

Er(0) : E;cos0; I Ercos2r: Eix * E,,
'nrl

Hv(o) : 
lrco 

(Ei - E,) : 1(Er, - E,)

atz = d, only the transmitted wave exists, r

z

Figure 5.9 Three methods of treatiirg reflection and transmission of

through a thin film: (a) the field tracing

matrix method.

method; (b) the resultant wave method; (c)

Ex(d): E1cosfi = 81,
\

(s.1 1 2)
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where p1 : cnsLi f (n1/1t'cs) and p' : co'sg' f (nzlt-tcd' and we have ass'umed that

trr is the same for urr ruyJ'Ltuoti *o* materials are diamagnetic in the infrared to

visible frequency range' *" t"t *4" write the above equations in matrix form'

' (asl) : (l -?)(f;)

, - 
E' 

- 
Ei'f cosot

' - Ei EiTf cos9;

ENERCY TRANSFER BY WAVES 1 89

Thus, with such a simple substitution, all previous expressions for the single-layer film
are still valid.

For a single layer of film, eqs. (5.117) and (5.1l8) can be written as

(?;,'(,\): (i )"' (5.1 14

We now combine eqs. (5'113), (5'114)' and (5'108)' using the continuity of E' and H'

at the interfaces, to get

(s.1 rs)

coeffi cients through the

film as

tz)-(mzt***rr)Pt
(mt * fimd t Qnu * mzz)pt

(s.122)

where rp, ry and tp, t23 are the Fresnel reflection and transmission coefficients from
medium I into medium 2 or from medium 2 to medium 3. The above formula is valid
for both TM and TE waves.

On the basis ofthese expressions, we can calculate the reflectivity and transmissivity
of the film. For a nonabsorbing film,

_ t -r2 , rl, + rl, | 2rpry cos2g2,' =lrl':ffi (5'123)

r12 | r23e2i9)zr:-' I + rnrzze2i'tlz

tntttet92- 
I + rnrzteZi?z

_ _n3cos01 ,.,2 Q-r?)Q -rh)
n1 cos 0i " I l 2rpry cos2g2 + r?r4,

(5.121)

and

(s.t24)

!f the optical constants of any media are complex, we should use eq. (5.76) to calculate
the. transmissivity, and carry out complex number operation, R : ir* and r = tt+.
,, The cosine function in eqs. (5.123) and (5.124) suggests that the reflectivity and
transmissivity vary as a function of thickness, ana wiJn there is no absorption the
variation is periodic, as qhown in figure 5.10. This periodic variation in reflectivity and

(mn 1- n) * (mzt *

where cyp : cosgi/cos91' For a TE wave' the above expressions are still valid if

and c1* are rePlaced bY

n cos9
D = -- o'll(J C1s: t
' pco

With the reflection and transmission coefficients known' we can calculate the refl ectivitY

and transmissivity according to eqs. (5.75) and (5.76)' For absorbing films, the

formulation is still valid by if n is replaced with the complex refractive index

The power of the matrix method can be best aPPreciated whendealingwith

of thin films. In this case, we can relate the electric and magnettc field inside the i

layer at both interfaces bY the interfeience matnx M; for that laYer. Since

components of the electric and magnetic fields are continuous at each interface

is free of net charge and cun'ent, the total inteder€nce

M : MrMzMz "'M't
0.3

Figure 5.1 0 Reflectivity,
transmissivity, and
absorptivity of a thin film
as a function of the film
thickness, assuming
vacuum on both sides.
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transmissivity is the interference phenomenon, caused by

ENERGY TMN5FER BY WAVES 191

the constructive or

superposition of the reflected and the incident waves. The maximum or fiummumln

reflectivity can be found by setting dRldrpz: 0, which leads to

sin 292 - 0

E
FoU
Jr
U
d,.l"o

' m)"o
- 4n2cos02

Under the above condition, eq. (5.123) becomes
3

^ 
: (ffi)" : (m)' <ru,ooa* : 2t + t)

1.5 2 2.5
WAVENUMBER=1/WAVELENGTH ( pm.I)

(b)

(21 + I) )'o/(4nzcos02),the reflectivity R can be a maximum (n2 <n3)ora
(nz < nt). Zero reflection occurs when the film has a refractive index ^,fi ing and

thickness satisfies eq. (5.L27) for odd m. Such interference phenomena are the

for antireflection coatings. When the film thickness is U'sl(2n2 cos 62),

does not depend on the second layer.

The reflectivity and transmissivity of multilayer thin films can be calculated

the transfer matrix method. In practice, the reflectivity and transmissivity of

can be controlled quite accurately with various thin-film deposition techniques

the possibility of controlling spectral and directional proPerties is Ialge. One

example is the Bragg refl.ector, which is rnade:from two alternating layers of

films, figure 5.11(a). Each layer has a thickness equal to one-quarter of the

wavelength inside the film' Although, at one interface, the reflectivity between

two materials may be small, the coherent superposition of the reflected fields can

a reflectivity that is close to l00To. Such Bragg reflectors are used as coatings

mirrors that are highly reflective at a specific required wavelength, such as for

and X-rays. Figure 5. 1 I (b) gives an example of the reflectivity of a

mirror, similar to those used in special semiconductor laser structures called

cavity surface-emitting lasers (Koyama et al., 1989; Walker, 1993). The

in certain spectral regions can reach 1007o, meaning that no electromagnetic fields

that wavelength regime exist inside the reflector. These spectral regions, called

bands, occur when the round-trip phase difference through one period (two

equals ZIn, that is, when the forward and backward propagating

5.1 1 (a) A Bragg reflector is a periodic thin-film structure. (b) Calculated reflectivity of
a Bragg reflector as a function of the incident photon

5.3.2 Phonons and Acoustic Waves

chapter 3, we considered phonon waves in a periodic lattice chain ancl discussed

jndices of3 and 3.5 and a conesponding thickness of4
wav"elength for.a reflector with refractive
17 A and 352 A for each layer.

ri'here the subscripts 1 and 2 denote layer 1 and layer 2 respectively. Denoting a ='iiil cos il I nzdz cos 62 as the optical thickness of one period, the above equation can
be written as (Knitrl, 1976)

cancel each other,

4trn1d1cos91 , 4ttnzdzcos0z _no-
)"0 1.6

fields inside the

phonons in superlattices. The periodicity in naturally existing crystal lattices leads to
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the representation ofPhonons in the first Brillouin zone. The periodicity of

adds an additional restriction to the phonon wavevector and leads to the

representation and the formation of Phonon minibands [figure 3.30]. Similar to

photon stop bands, the phonon minigaps formed in the dispersion of suPerlattices can

thought of as stop bands generated bY multiPle reflections and coherent suPerPosition

the lattice waves, as for photons in periodic structures For long-wavelength

lhat is, acoustic waves, one can also use the transfer matrix method as for oPtical waves

calculate the transmission of lattice waves through single-layer and multilayer

(Nayfeh, 1995). The reflectivitY r and transmissivitY t of an SH wave through a

thickness d can be calculated from the following matrix

(l) : o;'*o'(L)

where the interference matrix is similar to that of an electromagnetic wave

M- cos 9r'z i sin 9721 Y2

iYzsingrz cosqTz

I
-Zy; cos07; 27; cos07;

where rp72 ad cos 02/u72, Y2.: -Z72cos 02, and A1 is obtained

subscript I in eq. (5.134) by f. The subscript T is used to represent

transverse waves and, in this case, a transverse wave polarized perpendicular to the

of incidence. The reflection and transmission coefficients are defined as

r : ur(0)Iui(0) t : ut(d)/ui(0)

The matrix formuiation for SH acoustic waves is clearly similar to that for

waves. Multilayers can agairi be treated by simPlY rePlacing the interference matrix

with the product M1l{2 M2a4.The order of the matrices is the,same as the

of the layers. For longitudinal waves (L) and verticallY polarized transverse waves

with the displacement polarized in the plane of incidence, the relationship between

incident, reflected, and transmitted wave velocity comPonents of isotropic media is

: B;t MBt

where u7; and u1i are the amplitudes of the displacement velocities of the

transverse and longitudinal waves, respectivelY, and subscripts r and t represent

reflected and transmitted waves, as usual' Matrix 8; is a4 x 4 matrix given bY

urr (o)

uri (o)

ur.(0)
uz,'(0)

un(4)
vrt(d)

0
0

sin 07;

cos 91;
- cos 01;

: sin9l;
(xt + ?t"t cos2 oy;) k1i

-Pt1kY sin207;
Bi:

t4ku sin29u - p,1k71 cos207;
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folded

(s.134

by replacing the-

properties of

(s.13s)

4 1.2

ffgure 5.1 2 Transmissivity of a transverse acoustic wave polarized in the plane of incidence
ihrough a SilGe-like superlattice as a function of frequency with an incident angle of 17.7"
(Chen, 1999).

In the above expressions, ki(: a/u)is the magnitude ofthe wavevector ofthe incident
waves (SV or L, as distinguished by subscripts T and L). 81 is obtained by replacing
subscript i with r, that is, from incident to transmitted waves. The interference matrix
of {e ta.f-er (with index 2) in eq- (5.136) is obtained from M : Bzl NzBz,where 82 is
obtained by replacine i in eq. (5.137) by 2, and N2 is given by;' '

PHoNoN FREeuENcy (x1ol, Hz)

et9rz 0
0 eiPtz

00
QO

N2-
0

0
0

0
0 ,(s.138)

e-tQtz

polarized in the plane of incidence at an angle of incidence of 17 .7o . The stop bands
in transmissivity (zero transmissivity) correspond to the minigaps obtained from lattice
dynamics simulation (figure 3.30) (Yang and chen, 2001). Thi figure also shows that

The transfer matrix is 4 x 4 because, as shown in eq. (5.136), the longitudinal and
transverse waves are coupled and the conversion between these two waves is possible

incident field

Figure 5.12 shows an example of phonon transmissivity through a SilGeJike super-
lattice obtained by the transfer matrix method (Chen, I999), for a transverse wave

lolng transverse incident waves are ionverted into longitudinal waves.

5.3.3 Electron Waves

The study of electron wave propagation in layered media started with the investigation
on superlattices (Esaki and rsu, 1970). The most popular approach has been based on

17.7"

PHONON

PHONONLONGITUDINAL

+
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using the Kronig-Penney model. There are,

the transfer matrix method for electron.transport

superlattices (Tsu and Esaki, 1973; Huang and Wu, 1992). Because we have

extensively with the Kronig-Penney model in chapter 3 and described lhe transfer

method above, we will not present any details on the applications of the transfer

method to electron waves here.

5.4 Evanescent Waves and Tunneling

In section 5.2, we saw that when total internal reflection occurs for each of the

types of waves, an evanescent wave exists on the other side of the interface. The fields

wavefunctions of the evanescent wave decay exponentially from the interface. The

averaged net energy or particle flux carried by the evanescent wave is zero' However,

a third medium is brought close to the interface before the evanescent wave

completely, the evanescent wave can refract into this third medium. Ifthis refracted

is a propagating mode in the third medium, the evanescent wave becomes

. and a net energy or particle flux "tunrtels" through the small region between the

medium and the third medium. The reflection will no longer be total. In fact, one

even reach 1007o transmission under appropriate conditions. The descriPtions of
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and thus

cos9; - 'sinz gt - i I = ilcosdll (5.143)

2nt cos 0i(1 cos 4 - i sin 0r)

n2cos0; f n1 | cos d' li
, (5.144)

where i and 2 are is the unit vectors along the x and e coordinate directions. The above
equation demonstrates that the evanescent field decays exponentially with a penetration
depth

^ .1.6

2nn2lcos1yl

ynich is roughly of the same order as the wavelength inside the medium. using
t4. (5.14a) and thecorresponding expression forthe magnetic field, it is also easyto show
that the z-component time-averaged Poynting vector of the evanescent electromagnetic
field is zero,
1

(s.y : 
fneln x H*)z :)n"1n,nr)i:o (5.146)

that is, no net energy flows across the interface. However, if the instantaneous poynting
vector is examined, it can be seen that there is instantaneous energy flow into and oui
pf.the second medium carried by the evanescent field. The net energy flow in and out
averaged over time, however, is zero.
' The above discussion shows the similarities between evanescent electron waves and

waves. Evanescent acoustic waves can be similarly analyzed. We will
go into the details.

5.4.2 Tunneling

Tirnneling of the evanescent waves may occur if a third medium is brought close to the
first interface such that the exponentially decaying evanescent wave has flnite magnitude
at the interface between the second medium and the third medium. If the wave refracted
into the third medium is propagating, a net flow of particles or energy from the first to
ih6 ttrira medium occurs. In figure 5.13, we illushate the tunneling of electromagnetic
and electron waves. The analysis of the tunneling process can be based on the same
methods that are used for treating interference phenomena. For waves
ilassing through one layer of a thin film, for example, the transmissivity is given by
eq. (5.122). Substituting relations, eqs. (5.1 04) and (5.143), into eq. (5.122),we get

tptyexp _2rnzdlcos0zl
l6

(s.145)

5.4.1 Evanescent Waves I

For electron reflection at a step potential, as shown, in figure 5'1, total

ocburs when the electron energy E is smaller than the potential hgight us. In

eqs. (5.54F(5.56) lead to

*. _ 2ilkzle-lkzlz *.
h *ilkzl

where

Thus the penetration depth of the evanescent wave, which we define as the depth

which the wdvefunction decays to e-1 ofits boundary value, is

I. d: --- (5'14
lkzl .t

n1 sing;
SlIlUs:=>l

n2 | + rnrnexp 4nbdlcos$l
,{'0

(5.147)
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Figure 5.1 3 Tirnneling of totally reflected waves; (a) for an electromagnetii wave and (b) for

an electron wave.

where we have used dz rather than 4 to denote thqt the angle is for the wave inside

second medium, not medium 3. The transmissivity due to tunneling for a TM wave is

Re(n3 cos 01) ,-,, (\
nt cos?t t'

If the refractive index n3 is larger than nz, there are certain incident angles of 91

allow a real solution for 01, while 02is an imaginary angle. FIom the Snell law,

occurs when the incident angle falls in the range
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STOP BAND
I

Figure5.l4 Phonon transmissivity tlrough a Si/Gelike superlattice, each layer S A ttrictc,
showing the stop bands, the total reflection region, and the tunneling region (chen, 1999).

bands. At a large angle ofincidence, for which total reflection occurs, the transmissivity
across the superlattice is not zero but decreases exponentially as the frequency increases,
due to tunneling of acoustic waves.

Tunneling phenomena are the basis of several inventions that led to Nobel prizes,
including the tunneling diode by Esaki (1958) and the scanning tunneling electron
microscope (STM) (Binnig and Morer, 1982). The principle of an STM iJshown in
figure 5.15(a). A sharp tip is brought into close proximity with a conducting surface
but without contacting the surface. Under an applied yoltage, electrons tunnel through
the vacuum gap and create a current in the loop. The current is extremely sensitive
to the separation (sub-angstrom) between the tip and the surface, as oneian easily

=9o<
F=
-aA
2trPoz
E- 

=4

e-ttr>

- _l
srn ' - . _t<6; <SlD (5.149)

nonabsorbing, energy orparticle conservation gives R = 1 - z'
For electrons, we can solve the Schlijdinger equation for a barrier structure aS

in figure 5.13. The solution follows closely the method we used in section 3.2.1' which

also resembles the derivation of the transfer matrix method for electromagnetic

The tunneling transmissivity through a potential barrier of height U6 and width d is
(Cohen-Tannoudji et al., 1997)

4E(Uo - E)

4 E (uo - E) + u& sinhzlJffi@ - Dd / hl
(s.l

when the argument of the hyperbolic sine function is large, the above expression

)

be approximated as

l6E(Uo-E) . n ti----t.-----itst>tt x ----1,2 
- "^p1-21/z* 1us - E)d/hl:

uo

TIP

GAP

CURRENT

The same tunneling phenomenon can also

transmissivity of an acoustic wave through

transfer matrix method as a fttnction of frequency and angle of incidence (Chen, 1999)

At a low angle of incidence, the transmission bqhavgs aq normal and has several

Figure 5.15 (a)Thescanningtunnelingmicroscopeisbasedonthesub-angstromlevelsensitivity
'Qfthe tunneling current between a conducting tip to a conducting sample as a feedback to control
the piezoelectric translation stage, which is also capable of sub-angitrom motion precision, to
fly the tip over the sample and to obtain information on the topographical and election structure
ofthe sample surface. (b) srM image oftwo single-walled carbon nanotubes (odom et a1., l99g;
courtesy of Nature Publishing Group).

L6E (Uo - E)

occur for phonons. Figure
a superlattice, calculated on

,-zlk2ld (5.151)

5.14 shows the
the basis ofthe

SAMPLE
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see from eq. (5.151) since ftz is of thi oider of -1 A-1. As the tip is scanned over

the sample, different regions have different potential barriers of different heights' By

using the current as a feedAack signal to conhol the tiSsample t:p*":i:1:le can map

the Jlectronic wavefunction sunounding individual atoms or the surface roughness'

Figure 5.15(b) shows the STM images of two single-walled carbon nanotutes (odom

et al., 1998).

Since the invention of the STM, a host of other types of microscope have been

invented, including the atomic force microscope (Binnig et al., 1986), photon scanning

tunneling microscope (Reddick et al., 1989), scanning thermal microscoPe (Majumdar

et al., 1995), and others. The photon scanning tunneling microscope is also based

on the evanescent electromagnetic wave hovering above a surface. The atomic force

microscope, however,
between atoms canbe

is based on an even simpler principle: the effective spring constant

quite large=mudh larger, for example, than that of a Si cantilever

3 pm (thickness).x 100 U.m (length) x l0 pm (widrh). When such a cantilever is in

contact with a sample via a sharp tip, the atoms of the sample will not be scratched

off. Rather, the cantilever will be displaced. Angstrom-level displacement can be easilY

measured with either the STM (Binnig et al.' 1986) or through laser deflection, making

it possible to use such a device to measure the angstrom-level toPograPhY of

particularly for dielectric surfaces that cannot be characterized with an STM because

the sample is nonconducting

5.5 Energy Transfer in Nanostructures: Landauer Formalism

one
Consider

for example, the heat transfer between two reservoirs at temperatures ft and 72' as

shown in flgure 5.16. The heat flux from- reservoir I to 2 ls

[ , kr* ft'* k.o I
4t-2=Il; I I lu4Ernftr'rr)l (5'1s2)

p L' 
I k,1=-tr* kyt:-kmu kzr:o I

where E is the energy ofone carrier and 212 is the transmissivity from point 1 to point

2 for the carrier with energy'E, ur1 is the velocity of the carrier, the index P represents

summation ovei all the poiarizations of the carriers, and the wavevector summation

indices are over all values of k, and ft, and positive values of ft.. Equation (5.152) is a

recasting of eq. (5.86) and is valid for 
"le.ttons 

and photons as well as phonons' We can

similar.ly write the reverse heat flux from point 2 to point 1. The difference between these

heat fluies gives the net heat flux between point 1 and point 2, similar to eq. (5.88). The

Figure 5.1 6 The Landauer

formulation of the net (energy, charge,

. particle) flux between two points is

based on the canier transmissivity
. between the two Points.

Reservoir
T2

Reservoir 01 a-->2.

that
In

on both sides ofthe

,'.'i'-'
pnnciple of detailed balance can once again be applied to obtain a relationship between
the transmissivity from point I to point 2 and the reverse direction, as expressed in
eq. (5.89). With such an approach, and

large, the heat flux between point I and point. can be expressed as

Ff

q : (rr - r)P I ll,,*'et\fftn(E,0,ep1@)da14r]aaP {t>2n - 

"'l 

''t:/J-t'' i''- t:' I t4'
: KL.T '4'_ 

;,1r; II-153)

where K is the thermal is the solid angle
3.27, and T is the average temperature. One can

for the current and flux. of for

(Imry and

The for
When exists, the calculation of the

is also !uno internal
the

and formalism is very
convenient to use.

The effects of interference and tunneling in thin films, and more generally in nano-
structures, on the transport processes can be studied from the Landauer formalism, using
appropriately calculated hansmissivity between two points. As an example, we consider

FaffiivaaffiAil'STEibetween two parallel plates, paying special attention to the case
when the spacing between the plates is small. Quite a few studies have been devoted
to radiative heat transfer across small gaps. In a series of studies, Tien and co-workers.
(cravolho et al., 1967 Domoto et al., ltl-q investigated the effects of tunneling and
interference on radiative heat transferbetween small vacuum gaps, which are used in low-
temperature thermal insulation materials (Tien and Cunnington, 1973). More extensive
experiments were performed by Hargreaves (1969). The approach championed by Tien
and co-workers was equivalent to the Landauer formalism. polder and van Hove (1971)
established a direct approach that considered the emission processes based on Rytov's
electromagnetic field fluctuation theory (Rytov et al., 1987; Narayanaswamy and Chen,
2004). Pendry (1999) provided a slightly differentpoint ofview on radiativeheat hansfer
in small gaps, based on the Landauer formalism. Figures 5.17(a) and (b) show the
,modeling and experimental data for radiative heat transfer between small gaps, Due to

much two can be realtzed, as shown in figure
Some recent applications of the tunneling the scanning

tunneling microscope (Xu et al., 1994) and thermophotovoltaics (DMatteo et al.,2001;
Whale and Cravalho, 2002).

be times the

The n2 limit is the
emissive power inside an object, which can be derived following similar

!t9ps as we arrived at eq. (4.83).

can
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Figure 5.17 Size effects on radiation heat transfer between two parallel Plates (a) at low

pefature (Domoto et al., 1970; courtesy of ASME), (b) at room temperatue (Harireaves,

courtesy of Elsevier) (c) Radiative heat flux as a function of frequencY for radiation heat

between a plate at 300 K and another at 0 K, demonstrating that the heat flux can exceed

exchange between two blackbodies

also occur et al., 2002; NaraYanaswamY and Chen, 2003).

in magnitude
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12 l5
LAYERTHICKNESS (A)

Figure5.18 Thermalconductanceofsuperlatticefromtransfermatrixcalculation(Chen,1999).

in the medium..The resonqr-rl! nisdglglglecrlromagnetic waves with qptical pholons are
called phonon - p o larito ns and

from the heat flux the of
can waves.
same

film thickness (Wong et al., 1995; Chen, 1996; Zhang et al., 2003). This affects,
for example, the temperature of semiconductor wafers during thin film growth. The
uncertainty in temperature measurement caused by the emissivity change is a significant
factor in the design of semiconductor equipment used for rapid thermal processing

1989).
phonons in thin films, interference and tunneling phenomena may also affect

conduction in extremely thin films such as superlattices with very short spatial
Chen (1999) evaluated thermal conductance in the limit ofno scattering ofthin

and superlattices, as shown in figure 5.18. Generally, when the film thickness is
than a few monolayers, tunneling can increase the conductance. Lattice dynamics

lead to similar'conclusions (Tamura etal., t999; Simkin and Mahan, 2000;
and Chen, 2001, 2003). So far, there have been some experimental data that

this phenomenon, but they are not very conclusive (Capinski et. al., 1999;
2000)

.. Example 5.2 Universal quanturn thermal conductance

Develop a model for the thermal conductance of a square nanowire between two
thermal reservoirs, neglecting the internal scattering and assuming the phonon
transmissivity for each allowable mode is one.

i 16 August
x 19 August
+ 19 August
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o 22 August
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v 26 August
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can occur

but are of oPPosite signs (Raether, 1987) If one side of
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Figure E.5.2 Nanowire

cornecting two thermal
.r reseryoirs'

for each polarization' With a phonon transmissivitY of one (which requires

the materials of the reservoirs and the nanowire are the same, and also a

joint between the wire and the reservoir, similar to that drawn in figure 5.

we can use the Landauer formalism to exPress the heat transfer through the

nanowfe as

If we further assume that Tt - Tzis small, the thermal conductance of the nanowire,
eq. (E5.2-2), can be expressed as

4rz 3
t\:-:- Tt-Tz 2n

@w

[ ,,t0.JdT
@mn

(ry)'*(T)'Omn: C

(85.2.s)

(8s.2.6)

(E5.2.8)

Solution:Consider a square nanowire as shown in figure E'5'2- In the cross-sectional

iJ".ii"n, ,i*afog *"i"r;;;;" formed so that the allowable wavevectors in the

x and y directions are

rn firn. ftft,
k, :2n;- : * 

,trn - J'-(rn, n - *l' L2" ")"'2aa
sed in the DebYe model is

We assume that the linear dispersion relation as u

valid. The allowable modes inside the nanowire are

' + (ff)' +4

For the fust few quantized modes (n, z are small, so that a;rn is small) and at low
temperature, eq. (E5.2.5) can be simplified to

K:4!D 
F #io, (Es.2.7)

' m'n -' r):
. tr.tn

where )c^n : ha*, / rc aT' when m and. n are small, such that the rower Iimit can be
extended to zero, the integral value is n2l3. rn this limit, the thermal conductance
of each mode is

comment' This thermal conductance expression does not depend on the material
properties and thus is the same for all materials. such universal conductance behavior
also happens for electrons. Quantum size effects on thermal conductance have been
observed experimenfally (Angelescu et at., 199g; Schwab et al., 2000).t o,ha lf (ot, Ti - f ko, T)l dkz

t J,n

where the factor (ll}n) arises from the conversion of the'summation over In closing

quantum state determinbd bY k. in eq. (5.152) into an integration ovet k 2, because as expressed

the separation between two consecutive k. is 2ttlL, whete Z is the length ilistributions

the wire. We also used direct summation for the modes in the x and y

tions because the separations between two consecutive wavevectors in

directions are large when a is small. We will see in the next section that

phonon velocitY u, used for energy transport calculations should be the

velocity .l

Dz: daldk,
.

' Thus, eq. (85.2'2)can be converted into integration over frequency'

Ql2: Qt+2 - 42+l : - I

have discussed this point carefully in connection withthe treatrnent of the
thermal boundary resistance as represented by figures 5.7(a)-(c). Whether one should
use eq. (5.153) or rhe local equivalent equilibrium temperature (or chemical potential)

(F,5.2.3 'depends on how experiments are conducted or how models are laid out. So far, most
are done in electron systems with the electrochemical potentials of the

reseryoirs measured, and thus the Landauer formulation is directly applicable. If one
treats the transport inside the reservoirs concurrently with the ballistic transport betweenpoint I and point 2, the consistency of the definitions in each(F's.2.4
carefully (Chen,2003).

region must be considered
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5.6 Transition to Particle Description

Our discussion in this chapter so far has centeredonthe
mechanics, we knpw that energy carrrers

as ftu. In

The question is then: when must we consider
treat

energy carriers as waves'
?Wewiil

to answer these questtons

5.6.'l Wave Packets and Croup Velocity

In our previous discussion on energy propagation, such as eq. (5.152), we did

give much consideration to the meaning of the velocity. This velocity should

sent the sPeed and direction of energY ProPagation and is usuallY the grouP

To understand the grottp velocity, we first consider a Plane wave traveling along

x-direction

Sr-i(at-kx)

Its phase velocitY is [eq' (2.4)]

dxa
up,*: E = T
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t -+-o t-+o

oE
.=
CL
E

. Frequency

(p)

Figure 5.1 9 (a) A finite-time period signal generated between time period (0, 16) contains a

ipectrum ofplane waves extending infinitely in time (b), with a power spectrum shown in (c). The

inopagation of these plane waves evolves into a wave packet.

E,(x:,t)=a cosl(,r- +),- (o,- +).1
, *a cos[(*. +),- (-' - +),]

:2acos(L.at - A,kx) cos(a4r - t6x) (s. rs6)

The above electric field is shown schematically in figure 5.20(b). There

fhe caffier wave hy n wave rf fieqn".^y \ r,r Tf the ffequency Aar is much smaller
4,0, we can calculate the Poynting vector time-averaged over a period much shorter than

oo+Acrl/2

too-Lcil2

(a) {c)\v,

5.20 Example of the superposition of two plane waves (4) into wave packets (b). If there
different frequency components, the superposition leads to a narrow wave packet (c).
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l/Aar but much longer than l/at according to eq' (5'37)' to obtain the average energy

flux as
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0.2 0.3 0.5

(5.t62)

5.6.2 Coherence and Transition to particle Description

should we consider phase of the waves and when not? The answer to this

(s.1s7)

which is another wave propagating at the speed

(5.1s8)

This means that

,vc!99{!y.. This

as sketched in figure 5.20(c). The group velocity can be calculated from

(s.1se)

The above derivation is by no means rigorous, but the concept of wave'Packets

group.velocity is generally applicable to all waves. In the following, we will discuss

two points related to the group velocity One is whether the group velocity is always

velocity of energy flow. The other is the difference between the momentum of a

Huffman (1983)

' The group velocity of electrons is the velocity at uthich the electron wave.

moves in free space and inside a crystal' The energy

WAVELENGTH (pm)

Figure 5.21 Refractive index of silver as a function of waverength, showing the anomalous
dispersion region in which both the phase velocity and the group velocity are larg".,h;;";;;;
of light. The signal velocity, however, is still smaller than ihe qpeed of [ght. " 

- -

E' _ d(hk)*", _ -E-

and thus the phase and group velocity are, respectively,

and v, : a@/h) hk ,(s.l6l)

is consistent with the de Broglie relation P : ftk and our; classical relation mvr, bttt not the phase velocity. When we deat with electron
motion in crystals, however, nv, does not normally equal Ek, where k are the electron
wavevectors determined from the von Karman boundary condition. We call frk the crystal
momentum and use it to satisfy the momentum conservation rules and to calculate theextemal force .field, F"*1

4a2n ..
S(x, t) = 

!-J! cos4(t Ar.r - xAk)

tn+ftt,*Hft,

The reason for doing so is that the periodic potential also exerts another force on theelectrons. when the crystal momentum is useo, one can carry out the carculations as if
llectrons are not subject to the internal field of the crystar (Aschroft and Mermin, 1976;:slater, 1 967)' For such carculations, however, oo" ,tin shourd use tt 

" 
grou;;.ro.ity us

],*:,0 by eq. (5'159) as rhe actual speed of *o,ion of the erectrons, while using thecrystal momenfum for the external force and the momentum conservation.ul.r. i-#ril*aiguments hold forphonons inside crlstals. 
---.

,
I
, Anomalous

Dispersion

Y8:

ftk\2
2m

I

dispersion of a free electron is

question is fundamental for the transport of all these carriers and has been studied in
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different disciplines. ofthe carriers mustbe

and the wave ln

between the two

treat carriers as inioherent Darlicles. What are the conditions these approaches

be valid?
Answers to these questions are bY no means straightforward and vary with the types

of carrier. For Photons, the scattering is less frequent and mostly elastic;

the discussion of coherence has been based more or less on the sPectral Purity

and Wotf, 1980). For electrons, inelastic scattering is strong and thus the discussion

coherence is closely related to scattering. There is less research on Phonon

Consequently, we will first discuss photon coherence and then electron

followed by some discussion on phonons.

5.6.2.1 Coherence of Electromagietic Woves

From eq. (5.156), we infer that the spatial spread of the wave packets in figure 5'20

Lx Lk - 22, or, denoting L,x as ('r,

For electromagnetic wave 1S

andWoll to the

5 Each wave

no

wave nackets.

Figure 5.22 Traveling and interference of wave packets. (a) In a big domain, individual

packets are uncorrelated and can be thought of as point particles. (b) At an interface, the tail

the wave packet and ths reflected wave Packet have a frxed relationship and thus can

with each other. (c) Inside a thick film, two wave Packets can have transient interference

since they do not have a fixed phase relationship, such transient interference can

inside the film. The endresults are that no interference beats can be observed and thus

optics should be used rather than wave optics; (d) In a periodic structue, however, the

wave packets are split manY times at each interface and it is possible that the wave

a laver that are returned from other

the layer. 
,.
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Eoi bh;kbody rhermal radiarion,-the energy uncertainty ofthe individual radiation
emitters (atoms, electrons, or molecules) is of the order of rc sT , due to the ."uiri"" ;;
the emitters with the reservoir, which also means that the effeciive bandwidth for thermal
emission is rc67 / h- using this effective bandwidth and eq. (5.r63), oo" .* .rii-u[
that the coherence length is of the order of hc/(rcpT). A more o"tait"o 

"a.uruti* oi
the coherence lensth leads to (Mehta, 1963)

1S

(s.164)

This equation can be rewritten as

(5.165)

Forreasons to be explained later, eq. (5.164) will also be called t he rmal I e n g t h, rcflecting
the origin of this coherence length.
ence

radiation

of the

If the size

in figure 5.22(a).

now a thin film with two interfaces. is small
to the film ts this regime, -we can negle-ct

in section 5.3 and Fse energy supgruidgn ra

the same wave can that

the

(b)

other

IcT :2167.8

_l\ -A -/\
)

I

interfaces can overlap with the other wave of one wave

such a case,

after

of the of the becomes
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THICKNESS PARAMETER (4l:'lnzLfi\)

Figure 5.23 TransmissMty of a film subjected to polychromatic incident light as a function

the film thickness Parameter calculated from different methods: wave approach, particle

and partial coherence theory. In the thin film limit, results from the partial coherence theory

with wave approach. In the thick film limit, the theory agrees with the particle picture (Chen

Tien, L992).

(a)

when the film is thick, the particle plstrrt'e should be used. For film thickness in between,in the partially coherent regime, either the spectral averaging method or a treahnentbased on partial coherence theory should be adopted.

a as the

40 50

Figure 5'24 Directional and spectral averaged transmissivity ofa Bragg reflector for a therrnalradiation source at 1000 K' (a) comparison t-"tr""o *u* optics results and ray tracing resurts forperfect Bragg refectors at different period thicknerr, ,rroring trr"t ro, a tt i"tl"io[iiri.to tr,*the thermal length) the hansmis.si"try g*r il;;.no oi,rr" n"riod thickness, but rhe resurts frbmthe two methods never agree with.each other. ofr*" p"rioa u*i". .*aoJy, trre transmissiuitydecreases similarly to ray hacing but numerical vatu". ititt do not always agree with those of the.ray tracing method. Thus, random thickness variution, oo not;ortify the use oftheparticrepicture.

'lili,]ffi$ldeviation 
in thickness, 

'"dr; ;il;;*a,"".i.'"e,r,;;;;;;J;1i 
165) (Hu

5.3

_Jt
Ji

[f,'r1ro1ti1r)d@ ^_^6 _ J, _ Io^' n@)Ji@)da: -m6w .rru r'l - J - ff;'t;61a''
1S width of

ineidenl+lt-oton. Figure 5.23 shows results obtained from the above specfral

(marked as exact) and from a partial coherence formulation (marked as

(Chen and Tien, 1992). The two apprbaches lead to the same results, which shows

PARTIAL COIIERENCE (EXACT)

O PARTIALCOIIERENCE(APPRO)OMATE)
N1=(I.0,0), N 2{3.5'0)' N 3=(I'5'0)' Av/F0'lN1

KI>I

each the wave formulation,

when the film is thin, the single frequency formulation is approximatelY correct,
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with increasing number of periods, as shown in fi gure 5'24(a) - In another demonstation,

been shown that the radiation ts

waves. However,
oicture.

As an example, we consider that the thickness of a Bragg reflector has

randomness. For this case, the transfer matrix method is still aPPlicable. Lu et al.

computed the transmissivitY of Bragg reflectors with different level of randomness

the film thickness, as shown in figure 5.24(b). With randomness rn the period

the transmissivity does decrease with increasing number of Periods as with raY

However, the wave approach still does not agree with the raY tracing method.

on the degree of randomness, the transmissivity from wave oPtics can be either

or smaller than the ray tracing results'
in the ofIt turns out that

Figure 5.25 Photon transmissivity through a random Bragg reflection, showing that high_
frequency photons arereadily localized (Hu et a1.,2005). The fourcurves have incredg il,iil;;:
Variations, o, measured in terms of coherence rength, as indicated by,h.;.rh;J;;;:
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10
Wavelength fum)

5.6.2.2 Coherence of Electron Waves

the and the of the electrons
of electrons

create

othercases, the randonrness can also
waves. On the other hand ;ineliiii6]ffiEiilli,,s

meaLfrec-path is a measure of the
An:

0.8

0.4

o.2

ooq
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EE
o. t!
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Ed

fr-o
CI6

are chansed.

The elastic

and the surface

\W_lenkth.rne

the Fermi velocity, and r is

ayg1Agg_distance between
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time between successive collisions. The approximation sign

velocity is only an approxiniation to the average electron velocity; this approximation

works best in metals and in heavily doped semiconductors. * Not all the scattering events

goveming the mean free path are phase destroying.

ls :u wheie is the time.

the
we will discuss more in the next chapter, and

AN r. Because the relaxation time is used in the diffusivity, Ar is slightly

The use of diffusivity in the definition of phase coherence length

that
phase-hreaking time we

In addition to these length scales, there is also another length scale that is related to

thermal broadening ofthe energy levels ofelectrons. As in the discussion ofthe

length of blackbody radiation, the thermal K

Thus, according to the Heisenburg principle, the

in time is h/(rcnT).T\e thermal
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is used because the Fermi shed some light on the coherence issues of phonons. Scatterine of

this thermal length with the coherence length, eq. (5. 164), the thermal length here

is def,ned basecl on:the diffusion transport, with the diffusion length given as (a4)t/2

. where r" is the characteristic time. The photon cohelence length given by eq (5.164)

based on the ballistic transport of photons of different energy spreading ovet KsT ,

the transport length given by ur". Both lengths are a measure of the thermal

in the energy (wavelength)

concepts. This is the reason

the thermal length.

of the energy carriers, and thus are fundamentally

that we also call the coherence length given by eq: (5.1

The
IfAr> the

as the dominant
the strucfure as the of a nanowire or

ofa is larger than Ar, quantum states, as predicted by simple

well and quantum wire models in chapter 2,

Loundaries-and_hpuriiieris el astic andl

the dominant

tlgaEnent because of the short phonon wavelength, as mentioned before. The particle
approach is particularly useful when the detailed interface strucfures are not clear and
thus exclude a full:scale wave treatment.

The thermal conductivity ofsuperlattices is a good example to illustrate the coherence
issues related to phonon transport. has been observed that ther-
mal

m with valuesthe width obtained from the Fourier heat

one can arso estimate the thermar coherence rength on a basis similar to that forphotons and elecrrons (Ch:n, 1997). Using an energy spr€ad.of rcsT,,";;;,h;
phonon thermal wavelength, defined as u/-A,v, as _ uhlircBf). Atioom temperature,
Snt .u. 

typical value 9f , :_ 5000 ms-l, we get a thermal L"gth oii' A. Such athermal length, although useful as an indicaror or riiatl of ttre *r. i*t i j*io 
ttrermal

:pr:u{:.g, 
cannot be appried to periodic srructures such as superlatfices (chen, lggg).

in deciding whether wave effect can be negrected, as in the case or *re apptication or
eq. (5.165) to Bragg reflectors.

K

for such situations. If thermal excitation is often considered
ifthe strucfure

is often thought that

_same resutts as tlatofthewaveapproac However, as pointed out before for
the wave and the particle approaches lead to the same results for simple

only. For periodic multilayer structures such as superlattices, the particle and the

treatments do not lead to the same results, as explained in figures 5.22(c) and 5.24.

5.6.2.3 Coherence of Phonons

Phonon coherence from a transport point of view is the least considered one

electrons, photons, and phonons. The discussions on photons and electrons,

*For non-degenerate semiconductors, that is, semiconductors with the chemical potential lying

the bandgap, up should be replaced by the thermal velocity a1 = (3rBT

>A

effective mass.

/**)r/2,where 'z* 
is the
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Figure 5.26 Thermal conductivity of

superlattices obtained from a lattice

dynamics model with damped lattice

waves (Yang and Chen,2003)' The '

damping is determined by the interface

specularity parameter p, representing

the fraction of specularly scattered

phonons. In the thin period limit' the

results represent coherent transport

whereas, in the thick period lirnit'
the coherence is lost and the results

represent the particle transport regime'

(Yang and Chen, 2003). In figure 5'26,

sents the fraction of specularly scattered

The other phonons are diffusely scattered

examine the case p - l, that is, all phonons are

through the whole surPerlattice. In this case, the

of the period thickness until the period is onlY 1-5

cross-plane thermal conductivity actually

recovery in thermal conductivity is due

The fact that above about 10 A the thermal conductivitY

is related to thermal broadening. As we indicated

about 10 A. However, in this case, the

(Chen, 1999) and thus the wave and the

other. When P is less than one, the

to diffuse scattering. When the period
' is and thus thecoherent over many Peno'

imaginary wavevectors are close to those

boundary resistances at interfaces dominate

becomes much larger than the mean free path in

conductivity everrtually approaches the

In the thin period limit, the superposition

periods leads to new Phonon band structures

such as stoP bands, interference,

behavior.

15.7 summary of chapter 5

This chapter discussed the wave picture

the wave to the particle description' The

readers with various forms of waves including

00

10

AY
E

=
:>
o
!co(J
6
E
L
oEF

and material waves. The electromagnetic waves are governed bY the Maxwell

- 

P=0.83
.-.- P=0.9

----'P=1..0
E Capinski et al. 1 999

GaAsiAlAs (De)

the interfacb specularity parameter p

phonons, which are assumed to be

and are assumed to be incoherent. We

specularly reflected and waves

thermal conductivitY is

monolaYers, in which regime

mcreases with decreasing fi lm thickness.

to phonon tunneling, as shown in figure 5. I
dqes not change with

earlier, the thermal length is

particle aPProach would lead to different

particle apProaches do not agree with

phonon waves are damPed the superlatticeln

thickness is large, the phonon waves are

spectra calculated from lattice dYnamics

of bulk phonons' In this case, the

the thermal conductivity until the

the bulk material, for which the

predictions of the Fourier law (Chen' r99

of coherent Phonons extending over

and, corresPondinglY, wave

and tunneling all contribute to the thelmal

of energY transPort and the transition

purpose of section 5.1 was to familiarize

electromagnetic waves, acoustic
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Acoustic waves, which are long-wavelength phonons, are described by the acoustic field' equations or the Christoffcl equation. Material waves are described by the Schrddinger
equation. Solutions of the wave equations lead to the fields at each point as a function of
time. The energy flux associated with each wave is usually a product ofvarious fields,

: as given by the Poynting vector for electromagnetic and acoustic waves, and the particle
flux expression for material waves. Although these waves are described by different
governing equations, the key point is that all forms of waves share similar behavior, as is
clearly demonstrated in the following four sections. Although the material presented in
this chapter is diverse, some readers may be familiar with one or several forms of these
waves and can understand other forms of waves by analogy.

At an interface, all waves experience the phenomena of reflection and refraction.
A Snell-law type of relation governs the angles of incidence and transmission. The
reflection and transmission coefficients, which are called Fresnel coef,ficients for elec-
tromagnetic waves, can be obtained by applying the appropriate boundary conditions
for each type of wave. The expressions for these coefficients are quite similar among
different types of waves. From the reflecfion and transmission coefficients, one can
calculate the reflectivity and transmissivity of energy or particle flux. Several special
cases for reflection and transmission of waves at one interface are of great importance.
One example is total reflection, which occurs when the refractive indJx or the acoustic
impedance of the medium at the incident side is larger than that at the transmission side
for optical and acoustic waves, respectively, or the potential barrier is higher than the
energy of the incident material waves. When total reflection occurs, an evanescent wav.e
exists that extends into the second medium. The time-averaged energy oi particle flux
into the second medium carried by the evanescent wave is zero but the instantaneous
field and energy are not zero. Thermal boundary resistance between two perfect solids
is due to the reflection of phonons at the interface

When multiple interfaces exist, superposition of waves due to reflection at multiple
interfaces creates the familiar interference and,tunneling phenomena in thin films. For
multidimensional problems, which we did not discuss in this chapter here, the super-
position of scattered waves leads to diffraction phenomena. We introduced the transfer
matrix method for calculating the reflection and transmission coefficients of multilayers,
which is valid for both interference eind tunneling regimes. Interference gives the familiar
oscillation of reflectivity and transmissivity of optical coatings as a function of the film
thickness, and affects the thermal radiative properties of thin films and multilayers. In
multilayer structures, particularly periodic structures, interference leads to the formation

- of stop-bands, which corresponds to the formation of gaps in the energy spectrum of
electrons, phonons, and photons as discussed in chapter 3. Tunneling bf evanescent
waves that exist near the interface under appropriate conditions can occur when a third
medium is brought close to the interface, before the evanescent wave significantly decays
in the second medium, and when the third medium allows the propagation of the wave.
The tunneling phenomenon is the basis of sweral recent inventions such as scanning
funneling microscopy for electrons and photons. It also occurs for acoustic waves and
may affect heat conduction.

Given the transmissivity of heat carriers through two points of a system, we can
, calculatethenetheattransfer(orotherfluxesofinterest)betweenthetwopoints,.usingthe

Landauer formalism as manifested by eqs. (5.88) and (5.153). The Landauer formalism
views transport as a transmission process. The net flux (energy or particle) between any

10 20
Period

30 40
Thickness (A)
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two points A and B is the differbnce between the corresponding flux transmitted
A to B and that from B to A. The principle of detailed balance can be used to write the
final flux in terms of the properties of one side (or one point) only, together with
transmissivity

Calculation of energy or particle transport under the wave picture is often tedious
requires mathematical manipulation of the field quantities. In section 5.6, we
under what conditions we can neglect the phase information and treat energy carriers as

particles. Fiist, we demonstrated that the superposition of monochromatic waves

to wave packets that propagate at the group velocity rather than the phase velocity
group velocity is normally the velocity at which energy is propagating, but in a
dispersive medium the group velocity is not necessarily the energy propagation velocity,
The width ofthese wave packets is the coherence length, which is inversely proportional
to ttre inverse effective spectrum width (or energy spread) ofthe carriers. Ifthe coherence

length is long compared to the structural characteristic length, the wave picture
be used. In the opposite limit, however, we should be more careful. We can treat
transport as particles as long as the wave packets split from the same original one,
example, through reflection at an interface, do not overlap at the same place and the
time. This often happens when the structural size is large compared to that of the wave
packets. However, in periodic structures, such as Bragg reflectors and superlattices, the

wave packets reflected at different layers can merge e4d still overlap. Consequently,
particle approach and wave approach do not agree with each other. Elastic
caused by inhomogeneities such as impurities and interface roughness, does not desffoy
the coherence of the waves. The random elastic scattering can potentially lead to two
effects. One is localization, for which the waves are localized and do not propagate;

Localization is generally easier to observe in low-dimensional structures than in
dimensional structures. The other effect is that random scattering and the

superposition of scattered waves usually leads to results that are close to those obtained
from the particle treatment. When the exact locations of the scattering centers and
topology are not known, which is usually the case, the particle treatment leads to
agreement with experimental results. Inelastic scattering completely destroys the phase:

When the structure characteristic length is much larger than the inelastic
mean free path, or, for electrons, the phase.coherence length, the particle treatment
mandatory.

' 5.8 Nomenclature for Chapter 5

a electron diffusivity, ms-2
A amplitude and direction of field
B magnetic induction, N s .

m-l c-l
co speed of light in vacuum,

-lms'
d filmthickness, m
D . electric displacement, C m-2

allowed energy level, J
electric field, NC-l : Vm-1,
probability distribution
function.
vector wave field; force, N
Planck constant, J s

Planck constant divided by
2n,J s
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H magaetic field,

C m-l s-l : A m-l
i imaginary number unit, 

^rzJJ flux of particles, s-l m-2
Jo acoustic wave power flux,

W m-2
J, current density, C s-l m-2
J" surface current density,

A m-l

fi lqnitua. of wavevector,

k wavevector, p-l
k unit vector along wavevector

direction
I integer

lc . coherence length, m
rn mass, kg; integer
n realpart ofcomplex

refractive index Iy'
N complex refractive index or

complex optical constant

ys group velocity,6s-l
Z acoustic impedance,

kg rn-2 s-t
a absorption coefficient, 6-1

skin depth, m
speckal width, s-l
electric permittivitv.
C2N-l m-z :r--r
complex electric permittivity,
9211-t --2
electric permittivirv of
vacuum, 92 11-l --2
dielectric constant
angle, rad
imaginary part of complex
refractive index
Boltzmann constant, J K-l
wavelength, m
Lamb constant, Nm-2
mean free path, m
inelastic scattering mean free
path, m
thermal wavelength, m
phase coherence length, m
magnetic permeabiliry, N s2
c-z

A1
Le
lr

surface

cz J-l
impedance,
s-l

polarization pef unit volume,
Cm-2
magnitude of heat flux,
Wm-2
heat flux vector, Wm-2
charge, C
reflection coefficient
position vector
reflectivity
Poynting vect,or, S a1-2

strain tensor
time, s; or transmission
coefficient 

,

temperature, K
temperature ofphonons
coming toward interface, i.e.,
temperature of emitted
phonons, K
displacement, m
potential barrier height, J
Fermi velocity ms-l
velocity, ms-l

tLL Lamb constant, Nm-2
u frequency ofphonons and

photons, s-l
f elecrric polarizibility
p netch_arge density,
. Cm-r

ps surfa"e charge density,
C m-2

oe electricalconductivity,
g-1 *:1

r transmissivity

0 azimuthal angle, rad
I phase factor
1 electric susceptibility
V wavefunction
@ angular frequency,

rad.Hz
n" specific thermal boundary

resistance, Km2 W-I
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Subscripts

vacuum
medium l ormedium2
from medium I into
medium 2

from medium 2 into
medium 1

amplitude
complex

' based on emitted Phonon
temperature
incident wave

longitudinal, or Lamb
constant
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5.10 Exercises

5'1 sylace emissivity'the rerractive index of s'icon at 0.63 pm is (3.gg2, 0.0r9).
Calculate the surface reflectivity, transmissivity, and emissi"iry 

"r " 
,#-infinite

silicon wafer (a) at n-ormal incidenc", Oi"ilO; angle of iniden;;,;-G)#;
angle of incidence, for both rE and'TM *uu.r. .qtro, estimate trr" f*"t utioodepth for normal incidence.
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5.2 InhLomogeneous wate in an absorbing medium'

reflbcted by a medium with a comPlex refractive index N

ofincidence d. Derive an expression for the electric and magnetic fields inside

the medium. Show that the constant amplitude and constant phase

the wave do not coincide with each other. Such waves are called

waves. Derive an expression for the Poynting vector inside the

distribution due to absorption' A plane wave5.3 Heat generation
of 10a Wm-2 at 0.517 pm meets a gold surface at 30o of

the heat generation distribution inside the gold specimen' The

of gold at 0.517 pm is N : 0.608 +2.12i
5.4 Fresnel formula for TE wave. Detive the Fresnel

wave incident onto a plane surface, that is, eqs' (5.73) and (5.74).

5.5 Transmissivity into an absorbing medium'lf the'medium is

be careful in writing down the Poynting vector' Examining eq. (5.76) and

ing that only n2 is complex, nz * i rc2, derive an expression for the transmissivity,

using n2 and 12 exPlicitlY
5.6 Intetference ffi cts in thinfiIms-Color of thinfilm. Experienced workers in thin-

film deposition can tell the film thickness from its color. At 0.5 pm, the refractive

indexof SiO2 is N (1.46, 0) andthat of siliconis N = (4.L4, 0.045)

the reflectivity of a thin film of SiOz deposited on the silicon

thickness between 500 A and 2000 A at normal incidence. Mark down a

colors you expect to see at normal incidence for a few film thickness values

the given range.

5.7 Optical interference effects in thin films-Angle fficti' A. substrate coated with

a film may have different colors when looked at from different directions

0.5 pm, the refractive index of SiOz is N : (1.46

1'J : (4.L4,0.045). Calculate the reflectiviry of a 500

silicon wafer for the angles of incidence 0o, 30o, and 45o

5.8 Criticat angle of incidence for optical waves. For radiation

refractive index medium into air, calculate

of the medium is (a) 1.4 and (b) 3.5.

the critical angle ifthe refractive

5.9 Acoustic wave reflection and transrnission-SH wave.For a transverse

' wave polarized in the direction perpendicular to the

wave), calculate the reflectivity and transmissivity of the wave at an

between two isotroPic materials atthe following angles of incidence: (a)

(b) 15', and (c) 60' The materials' proPerties are

kg*-3, u71 :3900 m s-l; material 2: P2 :233 x 1

5.1 0 Reflection of electron wave. Calculate the reflectivity of a free electron with

energy of I eV propagating toward a potential

heights: (a) 0.2 eY (b) 0.8 eV (c) 1.5 eV.

5.1 1 Thermal boundary resistance. Estimatethe thermal boundary resistance

two materials with the following properties on the basis of the diffuse

face scattering model: material 1: u1

Jm-3 K-l; material 2'. u2 :.6400 m

For a heat flux of 108 Wm-2, estimate

interface?

3900 ms-l, Ct :: 1.67 x
s-l , cz
the temperature droP occurring at

A plane wave in vacuum is
n + iK at an angle

surfaces of

medium.
with an intensity

incidence. Determine
refractive index

formula for a transverse electric

absorbing, one

wafer for a

,0) and that of silicon is

A sioz film deposited on

going from a

plane ofincidence (an

interface
normal,

materiall:fi- 5.33x I
03 kgm-3, u72 = 640O

barrier with the following banier

between
inter-

1.66 x 106 Jm-3 K-

l- ^ ^ lnit
a = ulki+k;+ \T )'
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5 .12 Reflection of longitudinal acoustic wave. A longitudinal acoustic wave is incident
from medium I into medium 2. Derive an expression for the reflection and

transmission coefficients of the excited longitudinal and transverse waves as a

function of the angle of incidence. Both media are assumed to be isotropic and

their properties arei uTt : 6400 ms-l, u;1 : 8000 ms-l, pl : 2.3.x 103

kgtn-3; urz:3900 ms-1, u12 : 5000 ms-1, p2 : 5.3 x 103 kgm-3. Use

Auld's book (1990) as a reference for solving this problem.

5.13 Thermal boundary resistance at low temperature.Thermalboundary resistance

iq a phenomenon that is important at low temperatures even for bulk materials
. and becomes important even at room temperature in nanostructures. Treating

the transmissivity in eq. (5.92) as independent of angle and frequency, derive an

expression for the proportionality coefficient in eq. (5.93) a[ low temperatures.

5.1 4 Analogy of thermal boundary resistance for photons. Reflection of carriers can be

regarded as an additional resistance, as in the case ofthermal boundary resistance.

Photons can be reflected at an interface too, as we discussed in this chapter.
' Now we want to develop an analogy of thermal boundary resistance for photons

by considering a partially reflecting and partially transmitting interface located
between two parallel black walls maintained at temperatures 11 and 72. T\e
transmissivity of the interface is 212. Derive an expression for the net radiation
heat transfer exchange between the two walls, and a corresponding expression

for the photon thermal boundary resistance at the interface. In radiation, however,

we do not call such a phenomenon thermal boundary resistance.

5.15 Interference in multilayer structures..Tlvo layers of thin films are grown on
a silicon substrate. At the optical wavelength of I pm, the refractive index of
silicon is (3.6,0). The refractive index ofthe layer grown directly on silicon is
(2.4,0) and its thickness is 2000 A. The refractive index of the subsequent layer is
(1.3,0) and its thickness varies in the range of 0.1-1 pm. Calculate the reflectivity
of the structure at the given wavelength, using the transfer matrix method, for
normal incidence.

5 .1 6 T.mneling of electrons. For a potential barrier of height I .0 eY plot the transmis-
sivity of a free electron with an energy of 0.5 eV through the barrier for a barrier
width ranging from I A to 50 A.'"5.17 
Tunneling of photons. A vactrum gap of 0.2 pm is formed between two glass

substrates. Plot the transmissivity oflight from one glass substrate into another

at 0.5 pm. The refractive index of the glass is taken as 1.46. Compare the results
. with the situation if a thin film of glass, of 0.2 pm thick, is sandwiched within a

vacuum.
5.18 Landauer formula for phonon heat conductioz. A freestanding thin film of

thickness d is suspended between two thermal reservoirs at temperatures Tl
wrdT2. The dispersion can be approximated as

r;. . Assuming that the phonon transmissivity is one and neglecting scattering, derive
r, drt expression for the thermal conductance for heat conduction along the thin

film plane (-x-direction).
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5.19 La.ndauer formubrton for electron thermal conduction. Armetallic square

. nanowire is placed between two thermal reservoirs at temperatures T1 and 72.
I Assume that electron transmissivity is equal to one. Derive an expression for the

thermal conductivity of the nanowire contributed by the electrons.

5.20 Coherence length of blackbody radiation. Estimate the coherence length of a

blackbody radiation source at 10 K and 300 K.
5.21 Coherence length of laser radiation. Estimate the coherence of a laser

with a central wavelength of 1.06 pm and a spectral widttr of 10 A.
5.22 Coherence properties of elections. At low temperatures, the Fermi velocity in

a material is 2.76 x 10s ms-l, the electron relaxation time is 3'8 ps (l ps -
l0-12 s), and the phase-breaking time is 18 ps. Calculate the mean free path and

the phase coherence length of an electron.
5.23 Phonon group velocity. The phonon dispersion for a monatomic latiice chain is

5.24 Dffirence between wave and particle approaches (project type).In section 5.6
wJ stated that wave optics ind geometrical optics do not lead to the same

results for the radiative properties ofperiodic multilayer structures for
radiation. Consider a periodic structure made of two alternating layers with
refractive indices of (4,0) and (2,0), that is, nonabsorbing films. Blackbody
radiation at 1000 K comes toward the periodic multilayer structure at normal
incidence. Assuming both sides of the multilayer structure are vacuum, calculate
the reflectivity and transmissivity averaged over the blackbody spectrum for the
following cases, using wave optics and ray tracing:

(a) For each layer thickness of 1 pm, 10 pm, and 100 pm calculate the variation
of reflectivity and transmissivity as a function of the number of periods in the

structure. Compare the results for wave and ray tracing.
(b) For 10, 100, 1000 periods, calculate the average reflectivity

as a function of the thickness of each layer, assuming all layers are of equal thickness,
for the layer thickness range of 1 pm to 100 pm.

Geometrical optics.can be obtained using the following recursive formula for the
addition of every interface (Siegel and Howell, 1.992, p.928)

tr t kal' a-2^l -lsin-l. w-a-\t \ ml 2l
Derive an expression ofits group.velocity. Prove that the group velocity at the

zone boundary is zero.

, R,TS rmrn' Rn*m: R. * T:R^R" rm*n : 
, - ^^-"where the subscript rn refers to the total reflectivity and transmissivity of

first n interfaces (counted from the incident side) and n represents those of
subsequent n additional interfaces. For example, for one layer with two
(the reflectivity and transmissivity at the first interface are R1 and z1 and

at the second interface are R2 and h), the above formula becomes

I Rr-r - Rr -l- Rf? 
rlLt : Tlr2

Rl+ 
t _;1R; r1+r : 1_C&

Hint: one numerical problem with the ransfer matrix method for thick
is that the exponential function may blow up. One must find ways to solve
problem for calculating thick films using the transfer matrix method.

radiation

and transmissivity

Particle Description
of Transport Piocesses: Classical Laws

we discussed in the prwious chapter when we can ignore the coherence effects.and
treat heat carriers as individual particles without considering their phase information.
In the next few chapters, we will describe how to deal with energy transfer under the
particle picture. Most constitutive equations for macroscale transport processes, such
as the Fourier law and the Newton shear stress laws, are obtained under such particle
pictures. These equations are often formulated as laws summarized from experiments.
In this chapter, we will see that most of the classical laws governing transpojprocesses
can be derived from a few fundamental principles.

; , In chapter 4, we studied systems ut 
"q,iitittio* 

and developed the equilibrium
distribution functions (Fermi-Dirac, Bose-dinstein, and Boltzmann distributions). The
distribution function for a quantum state at equilibrium is a function of the energy of the
quantum state, the system temperature, and the chemical potential. wtren thJ system
is not at equilibrium, these distribution functions are no longer applicable. Idealiy, we
would like to trace the trajectory of all the particles in ttre system, as in the molecular
dynamics approach that we will discuss in chapter 10. This approach, however, is not
realistic for most systems, because they have a large numbei of uto*, or molecules.
Thus, we resort to a sratistical description of the particle trajectory.

. In the statistical description we use nonequilibrium distribution functions, which
depend not only on the energy and temperature of the system but dr" ";;;ri;;;;and other variables. we will develop in this chapter the governing equation; for the
nonequilibrium distribution functions. In particular, *. iirr ."ry"o;1il-^e;Irr*unn
equation, also called the Boltzmann transport equation. From the Boltzmann equation
we will derive familiar constihrrive equations ,u& u, rh" F;;;;h.'", it . N"*ron rt 

"u.sffess law, and the ohm law. we witt also demonstrate that conservation equations,
I
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such as the Navier-Stokes equations for fluids and electrohydrodynamic equations

charged particles, can be obtained from the Boltzmann equation. Special attention

be paid to the approximations made in these derivations, which will be relaxed in the

chapter when we consider various classical size effects. A discussion is also

in this chapter on thermal lvaves arrd their appropriate descriptions.

6.1The Liouville Equation and the Boltzmann Equation

We discussed, in chapter 4, the probability distribution of an equilibrium

occupying a specific accessible quantum state. Because the system is at

the probability distribution take a simple form. For example, the Boltzmann
depends only on the energy ofthe quantum state and on the system temperature.

occurs, however, only wheir the system is in a nonequilibrium state and

the equilibrium distribution can no longer describe the state ofthe system.

to describe the state of such a nonequilibrium system, more information is needed.

this section, we will introduce nonequilibrium disfibution functions that describe

states of, systems and the governing equations for the evolution of the

distribution functions. We will start from the general Liouville equation, which

valid for all classical systems but is difficult to solve, and move on to the

Boltzmann equation that serves as the basis for our future analysis. We will also

the assumptions made in the Boltzmann equation and see, consequently, its

6.1.1 The Phase Space and Liouvillet Equation '

Consider a system with N particles, where each particle can be described by
generalized coordinate r and momentum p. For example, the generalized

of a diatomic molecule, 11, include the position (xt, yt, zr), the vibrational
(the separation between the two atoms, Ar1), the rotational coordinates (polar

.azimuthal angles, d1 and pi); likewise, the generalized momentum, p1, includes

translational momenta (rnvxL, mvfl, mvrl), the vibrational momentum proportional

the relative velocity of the two atoms (mdLxrldt), and the rotational momenta

momenta of rotation corr6sponding to d and p directions). We assume here that there

m degrees offreedom in space, that is; m genenlized spatial coordinates, and ra

'of freedom in momentum for each particle. The number of the degree of freedom of
whole system is2n :2m x N .Thesezn variables form a 2zl-dimensional space that

called a phase space. The system at any instant can be described as one point in
a space. The time evolution of the system, that is, the time history of all the

in the system, traces one line in such a 2n-dimensional phase space, which we will
the flow line as in fluid mechanics

Now we consider an ensemble of systems-a collection of many systems

the same macroscopic constraints-as we did in chapter 4. At time t
in the ensemble is represented by a different point in the phase

figure 6.1. From classical mechanics, we know that with a given

trajectory of the system is uniquely determined. Since the initial condition for

systern differs from that of other systems in the ensemble, the traces of systems

ensemble

. atF0
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Figure 6.1 Phase bpace, and an ensemble
in the phase space.

0, each

space, as shown
initial condition

such an ensemble never intersect, so that the flow lines in phase space do not intersect
each other.

The number of systems in an ensemble is usually very large, much larger than the
number of the particles in one system. Because of the large number of sysiems in one
ensemble, we can treat the points of the ensemble, each representing one microstate of
the original macroscopic system, as forming a conrinuum in the phase space, just as

we treat atoms or molecules in a macroscopic system as a continuous medium in real
space. We define a particle.density ,f 

(tr) such that, surrounding any point (r(u), p(z);
inthephasespace, wherer(') : (rr, r.2,...,rrs): (1(1). r@,;@,-,..,r(r)) includes
all the space coordinates of N particles and similarly p(n) represents all the momentum
coordinates, the number of systems is

No. of systems : ;(il)1r, 
"(n), 

n(n);Ar(')Ap(,)

superscript (n) to denote the generalized space and momentum coordinates, and
to represent the N particles. The particles density in the phase space

is called the N-particle distribution function, which represents
density of flnding a particular system at a specific state defined by r(n)

assume tJtat the ensemble is ergodic for all time, this distribution function
represents the probability ofobserving one system at a particular state 1(n) 3n6 p(n)

. over a period of time (such a time period should be smaller than the characteristic time
we use in tracing the trajectory, or the relaxation time that we will discuss later).

The time evcjlution of /(D11, r(n) p(n); in the phase space is governed by the

lines of systems inequation, which can be derived on the basis that the flow
ensemble do not intersect. Consider a tube formed by the traces of a set of points (a

subset of systems in the ensemble) as shown in figure 6.1. Since the flow lines do not
lntersect, the points in the phase space are conserved. We want to derive an equation

the distribution function ,f(N) bas"d on this conservation 'requirement. Recall that
fluid mechanics or heat transfer, we often fse the control volume method rather than

the trajectory of individual fluid particles. we could do the same for the points in
space and examine a small control volume in phase space, as shown in figure 6..1


