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4.19 Blﬁckbody radiation in a small cavity. Consider thermal radiation in equilibrium

jati ityi bic cavity |
insi i ity. Compute the radiation energy density in a cubic cav.
u}sllde Stl}llcg a-fu ftr‘l:la::tf)[" =021(§)0 K and compare it with the Planck dlst.r;butt(l;n :
gbt:;;id by assuming that the cavity is very large comparelcli to t;zt\:}j:z;gjm; 4
4.20 Entropy of one phonon state. From egs. (4. 14) and (4.40), show ; :

s, of one phonon state having a frequency @ obeys the following relationship:

hw % KBT_ai
"'ITfD(]- + fo) = T 9w ,

Where fo is the Bose—Einstein distribution.

5

Energy Transfer by Waves

The wave—particle duality of matter from quantum mechanics implies that energy carriers
have both waye and particle characteristics. One way to think about this duality is that
material waves are granular rather than continuous. For example, a phonon wave at
. frequency v contains a discrete number of identical waves, each having an energy /.
- A fundamental property of waves is.their phase information. A coherent wave has a
. fixed relationship between two points in space or at two different times. Due to the fixed
% ° phase relationship, the superposition of waves from the same source creates interference
. and diffraction phenomena that are familiar in optics.
- The wave characteristics of matter (electrons, phonons, and photons) .are important
27 for transport process i aces and i .. We have seen in previous
-5 chapters that the size effects on energy quantization can be considered as a result of
“the formation of standing waves. In this chapter, we will discuss the reflection of
waves at a single interface, and interference and tunneling phenomena in thin films
‘land multilayers. We will make parallel presentations for three major energy carriers:
and @honons We have discussed rather extensively in chapters 2
and 3 the electron waves based on the Schrédinger equation. Optical wave effects are
readily observable and can be understood from classical electrodynamics based on the
Maxwell equations, which will be reviewed in this chapter. For phonons, we will adapt
- continuum approach based on the acoustic waves, rather than on the discrete lattice -
_dynamics method we used in chapter 3. The acoustic-wave-based approach allows us to
- treat phonons in parallel with electrons and photons. We will see that wave reflection,
interference, and tunneli g phenomena can occur for all three types of carriers and the
descriptions of these phenomena are also similar (table 1.4), despite the differences in
their statistical behavior, dispersion, and origin (table 1.3), as we discussed in previous
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gy forunderstanding jderftical.to €q. (5.2) and we thus expect that the solution to a physical probl i
thellmt';llguflary pe.1rt of th(? complex variables used in solving the govemjrr’l e ZmﬁWﬂl =
 Inthe .ollowmg sections, we will examine three types of waves: the il qta s
as a material waves, the electromagnetic wave governing the radiati;m tran:t?ell:ozllln‘(’iwtl}‘l’:

_acoustic wave representing lattice vibration.

chapters. Readers familiar with any of these waves can use the analo

the other waves.

For macroscale transport processes, however, we seldom consider the phase of
material waves. Rather, we treat the entities as particles. Why and when can we do
07 Section 5.6 answers these questions and briefly discusses transport in the partially

coherent regime.

5.1.1 Plane Electron Waves

Illlc(;l::f;:raz’dw? dealt ex.tensively v&./ith electron waves in planar geometries such as free
e  and e ectrons in a potential well. The wavefunction of a plane eiectr
propagating along the positive x-direction is T T

5.1 Plane Waves

When throwing a stone into water, one can observe a concentric wave propagating

outward. Television antennas emit electromagnetic waves that are approximately 4
spherical. Rather than considering these nonplanar waves, we will carry out most of

our discussion in this chapter on the basis of plane waves, although the phenomenzi to 4
£ waves such as the cylindrical or spherical
that has a constant amp itude at any plane pe pendicular 1o
the direction of propagation at any fixed time. These waves must satisfy the equation
governing their motion. Later, we will discuss these governing equations, such as the 3
Maxwell equations for electromagnetic waves. Before getting into these details, let’s first
examine some common forms.of plane waves. For example, in chapter 2, we showed

that the wavefunction of a free electron is [eg- (2.34)]

W(x,t) = Aexp[—i(wt —kx)] (5.4)

From the Schrodinger equati i
: quation, we obtained in chapter 2 i i i
relation between the electron energy E and wavevectof k R

Yia 2m(E — U)
i2 v (5.5)

where U is the electrostatic potential. Thi i
from [eq. (2.31)]: potential. The particle current (or flux) can be calculated

Ale—-i(tvutf)cx) + A2€-i(w»t+kx) (5'1)

Y(x,t) = ;
7= P gyut — grvy ih :

where the first term represents a plane wave traveling in the positive x-direction and
the second term in the negative x-direction. These are scalar plane waves because the

wavefunction is a scalar. Other waves, such as the electromagnetic field, are vecto
waves because the electric/magnetic fields have directions. We can express a harmonic,

vector plane wave propagating in three-dimensional space as

F(t, 1) g@m@z —ker) 5.2)

1on of the field (e.g., electric, magnetic, 0

AS N S ﬂ T 1 18 81 1 t e F yl]tlllg vector ﬂla' Iel)]ese]lis
we Wlll s€e lateI thl ux exp €8S101 18 Sumular to t.h 0)
the Cnelgy ﬂux Of CICCtIOInagIleth and acoustic waves

i 5.1.2 Plane Electromagnetic Waves

I.[l thls SeCtIOIl, we Wlll lIll‘_IOducc the Bllaxwell equatlons that gOVeIn the p] ()pagatl()]l
Oi eleCtIOIllagneth waves. e Hlu Sho" that a Pla-ne wave Of the fOIIn Of eq (5 3)

where A re
A ) ¢ 3 satisfies the M 11 i i
atomic displacement), @ is the angular frequency k [with components (kx, ky, kz)] o geenes I SRS USSR L celoula
‘ ‘ - - P3| . _ _ te th
the wavevector representing the direction of wave propagation and its spatial periodici elci:_;lomagnenc waves. e the energy flux of the
electro i i i i
magnetic wav cterize an electric_field vector

(k| = 2m/A), and ¥ is the spatial coordinate. Equation (5.2) is a plane wave because all
the points r satisfying k o r = constant form a plane perpendicular to the wavevector;

k, and the field F is a constant on this plane at any given time.
Very often, it is much more convenient to use the complex representation rather than

the sine and cosine representation for the waves. For example, instead of eq. (5.2), we

can write F as

E [N C™! = Vm™!}, and a magnetic field vector H i

E| A . i [Cmlsl=Am!

: ,;z‘;:g:;‘dasglg:ziﬁ:ld 1nteractls with a medium, under the force of the clectrgc.: ‘zﬁ;l(]ie:zatz?
) decfedsfhoe nt:$ trons and ions of the atoms in the medium are set into motion. These

Sl s aro upeesmnened onto o exeanl 510 Fob hacits Tponie oot

. elds. For example, the positive i

eqﬁf[?;:[ L?:scg)(:lréi tci)(f) an fatom‘ under an ext'ernal field will be deformed ?rom thelg;sg{annaci

e n, forming an f:lectncal dipole.* A measure of the capability of

. erial to respond to the incoming electric field is the electric polarization pirj]mit

F(t,r) = VA exp[fi(wt —ke 1)]

When using such a complex representation, we resort to either the real part or the
- problem, in accordance with 8

hnaginarj ~art of the final solution as the solution ofthe

whether the initial or boun conditi ted in terms of cosine (real part) § 5" %A dipole is a pai _
£ pair of positive charge Q and negative charge —(Q, separated by a small distance a. Th

- The

o . - - . = L - s P -
or sine (imagin art) functions. For example, the imaginary part of F in eq. (5.3)1 Mipole moment of the pair of charges equals p = Qa.
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field through the electric susceptibility ¥,

L.,[P:eoxE'

B=SDE+P=50(1+)()E=£E1

where ¢ is called the electrical permittivity of the medium. _
The electron and ion motion in a medium also induces a magnetic field, which is :

superimposed onto the external magnetic field. A measure of the total magnetic field 3

inside the medium is called the magnetic induction B [Nsm~' C~1 = NA~'m™1],

B=uH

where 1. is the magnetic permeability. In vacuum and in most materials, u = pg = 47 X
107 Ns?C~2 = Hm™". If a material has p larger than uq, it is called paramagnetic.
and if o < py it is diamagnetic. Many materials are nonmagnetic, with & = pg.

The electric dipoles and electric polarization are most appropriate when describing
the distortions of electrons bound to tons. The free electrons that are not bound to any:

atoms will also be set into motion by the external electric field. The motion of free:
electrons forms a current, which is related to the electric field through Ohm's law, ;

where g, [C2N"1m~1s~! = Q=1 m~!]is the electrical conductivity. :
The propagation of an electromagnetic wave is governed by the following Maxwell

equations:

(5.10

B
PrB==2
2 ot

aD
VxH=—
X 3 +Je

VeD=p,
V.B:O

states that a changing magnetic field induces an electric field. Without the first term o
the right-hand side, eq. (5.12) is the Ampére law, which says an electric current induces’;
a magnetic field. Maxwell’s (1831-1879) ingenuity lies in the first term of the right-
hand side of eq. (5.12), which represents the current due to electron oscillation around

the ion even though the electrons are not free to move. This additional term, howeve: i
places the electric and the magnetic fields at similar positions with respect to time and ;

space, and endows the electromagnetic field with a wave type of behavior, as we will’

volume, or the dipole 1i C m™2], which is related to the electric __ ;

G0

where g is the vacuum permittivity, g = 8.85 x 1072 [C2N~!m~2 = Fm ™!}, and the f_
electric susceptibility is nondimensional. The total field inside the medium is measured

by the electric displacement D [C m~2], which is a superposition of the contributions 3
from the external electric field and the electric polarization, '

538) |

(5.9) i
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) Iaif:r. The Maxwell equations govern the propagation of ail eleclromégnetic waves,
including, for example, the signals of cellular phones, radios and televisions, lasers,
light, thermal radiation, and X-rays, despite the fact that these waves are generated by
different sources. The differences between these waves, in terms of propagation, are '
mainly the wavelength.

- We will next demonstrate how to derive a wave type of equation for the electric field,
By taking the curl of eq. (5.11), we get '

;. VS(VxEZ:—%(VxB) (5.15)
::I"he left-hand side can be manipulated using the vector identity
| ; . VxVxE=V(VeE)~VE (5.16)
5 : For a region free of electrical charge, éq. (5.13) leads to |

§ VeD=0andthus Ve E = 0 (5.17)

We 51.10u1d I.nention that the second of the above equations is based on the assumption that

the dielectric constant ¢ is independent of space, which is not the case for the photonic

‘f;rystall that we discussed in chapter 3. Substituting egs. (5.16) and (5.17) into eq. (5.15)

and using B = pH [eq. (5.9)] yields

—VE= (v,

. = —HE(V x H) (5.18)
To eliminate H, we substitute eq. (5.12) into the

- and (5.10),

above equation and utilize egs. (5.8)

|

{2

: _I-f.q, = 0: €q. (5.19) is clearly a wave type of equation. The first-order derivative in
“ eq. (5.19) introduces damping to the wave i
A similar equation for the magnetic field can be derived. We seek a s
* in the form of a plane wave, eq. (5.3),

iy E(r. 1) = Egexp[—i(t — k)]

| where Eq represents both the amplitude and direction of the elec
th (5.20) into eq. (5.19), we obtain

(5.19)

olution to eq. (5. 19):.

(5.20)
tric field. Substituting

i kek = ;.wwz +ipo.w = .u-"-’zfsc(l + X) +!-o.£/w] = Méwz (5‘21)
Na
k = —
[k % (5.22)
ith
cp = 1 ,§‘=80(1+X)+iae/(1j N = u_§=ﬂ+l'k.' (523
010 ’ HoEQ ’ )
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Now let us see how we can'calculate the energy flow associated with electromagnetic
ﬁe.:ﬁs. W(e5 sltzf)t byd Itrlllantlipulanng the Maxwell equations. Taking the dot product of H
with eq. (5.11) and the dot product of E with eq. (5.12), t i i

o i, q. (5.12), then, subtracting the resulting

where ¢q is the speed of light in vacuum, 3 is called the complex permittivity, and N i
called the complex refractive index or complex optical constant.* The real part of N, n,is
the usual refractive index of materials. The imaginary part of N, k, is called the extinctio
coefficient and measures the damping of the electromagnetic field, which arises not onl
from the absorption of free electrons [the conductivity part in eg. (5.21)], but also from-
the dipole oscillation of bound electrons and other mechanisms [the susceptibility par

of eq. (5.21)]. For nonmagnetic materials (it = 10),

%

- a (1 1 ’ )
Vo(ExH):a(—z-p,HoH+E€EoE)+EoJE (5.30)

where we have used the vector identity, Ve (Ex H) = He (V xE) —E o (V x H) We

N = p = 3 Je, =n+ik (5.24) : identify the meaning of each term on the right-hand side of eq. (5.30) as
and &, = &/eg is called the dielectric constant or dielectric function. Neither N nor. Magnetic field energy densi -3 1
bt .
¢, is really a constant, as their names suggest, because they are dependent on wav gy density [Jm™]: 2 vHe H (5.31)
length. Studies on the wavelength dependence of the dielectric function can lead Electri ! 1
tric fi -37.

insights into the material constituents and energy states. For example, some electro cReldeneney density HIpmecl]: 5 ¢EoE (5.32)
and phonon states can be identified from measuring the dielectric function or complex. Joule heating [W m™3]: EeJ (

’ e Jde 5.33)

refractive indices. There exists a large library of complex refractive indices of materials.

(Palik, 1985). ‘ : e,
Substituting eq. (5.22) into eq. (5.20), we see that the electric field of a harmonic.

electromagnetic wave can be fexpressed as _
e N 2 ; B

E(r, ) = Epexp [—iw (t = c—k ° r)] » (5.25)
: o »

where k is the unit vector along the wavevector direction. With the electric field deter-
mined, the magnetic field can be computed according to eq. {5.11). One can further prove
that the electromagnetic wave is a (ransverse wave, and that the electric and magnetic
fields are perpendicular to each other: d

To see what E x H means in eq. (5.30), we integrate the equation over a volume

;/ffv.(ExH)dV
=/f/ [;% (%M;I’.H+-;-5E.E)+E.JE}JV (5.'3{1)

and rewrite the left-hand side into a surface integral, using Gauss’s theorem

—#(ExH)oﬁdA

=3 9 (1 1
—//f[a <5MH.H+§EE.E)+E.Je:|dV (535)

d magnetic fields pointing i - and z-directions, '
?:ag:;?iing ellcds :aisbioéig?fs ;:dtzse y- and z-directions ; \Ayl'lere the surface integration is carried out over the surface enclosing the volu nd
- nis the local normal of the surface, pointing outward. The right-hand side of eqm(; ZI;)
. X | ‘ : . (5.
L e [_iw (t . _c_)] (527) : represents the rate of change of the stored electromagnetic energy inside the volume plus

ELlHIlk (5.26)

e x-direction with the electric

In the special case that a plane wave is traveling along th
respectively, the electric and

y
i}leﬂ]heag generated. .The first law of thermodynamics requires that this must be supplied
y Lhies energy flow into the volume across the boundaries, hence the left-hand side must
o¢ this energy flow. Because of the negative sign and the fact that fi points outward, the

cross product E x H must mean the rate of energy flow into the volume i
groduct the Poynting vector S [W m~2] e el B

(s=ExH]| (536

- geli?;nti:? t}/;c:l);c r[e;presents .the instantaneous energy flux. It oscillates at twice the
: b | T
(8) = T f Sdt’ (5.37)

t

= ] i 17 22) 52

where the minus and plus signs represent waves propagating in the positive and negativi
x-direction, respectively. Substituting eqgs. (5.27) and (5.28) back into the Maxwell 58
equation (5.11), we can see that the electric and the magnetic fields are related:

N
peo

where the plus and minus signs correspond to those in the exponential factor.

coupled with a plane wave of the form E(r,1) = Eg

*N is sometimes expressed as N = n —ix,
the end results will be the same.

expli(wr — k o ¥)] rather than eq. (5.20). As long as they are consistent,
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If the complex representation of E and H is used, as is the case most of the time, it can ; "

be shown that the time-averaged Poynting vector can be calculated from.

(S) = %Re(Ec x HY)

(5.38)

i

where the subscript ¢ is used, only in this equation, to empbasize the complex repre- E
sentation of E and H, and the superscript * means the complex conjugate. Because 3
we use the complex representation most of the time, we will drop the subscript ¢
whenever it is clear, as we have been doing so far. The time-averaged Poynting :
vector expression, eq. (5.38), is similar to the particle flux expression, eq. (5.6), for
quantum mechanical waves. As we move on, we will see more similarities between

these waves. :
As an example, we consider a plane wave propagating in the positive x-direction as 2

given by egs. (5.27) and (5.28). The corresponding Poynting vector is

(S) = %Re(EC x HY)

1 i i "Nx . N*x N
= iRe [EyaHz*a exp [—zw <t —»C—O)] exp [zw (t — ):H F x12)
I N* io(N — N1 .
= ERe [EyaEE;a exp [——CO— b’
1 - 2 2
= §Re{n i exp [— wicx]} Eiax
: neo €0 =
_1n i 4ricx £ 3
~ 2 uco 2 va
1 2
F _Z_ﬁ —-aeriax (5.39)
0 7

where g is the wavelength in vacuum and we have used eq. (5.29) to replace HZ
by Eya, and

4k -1
O!—T[m 1

Equation (5.39) shows. that as the electromagnetic field propagates, the energy decay:
exponentially. The skin depth is where the energy flux has dropped by el With a
x ~ 0.1, the skin depth is of the order of one wavelength Aq. For optical fibers, &
a low absorption coefficient is essential. For a § ~ 1000 m and Ao 1.55 pm,’
which is the wavelength used in long-distance optical communication, &, must be less :;
than 1010, For metals, « is usually large in the range from visible to far infrared, and '
thus electromagnetic fields usually do not penetrate far into metal. ' s iH
In closing this section, we comment further on the relationship between E, H, and k G
Equation (5.26) says that they form an orthogonal set. Usually, it is further understoo
that this set follows the so-called right-hand rule: with the right hand fully extended and '
the thumb perpendicular to the four other fingers, close the hand by turning the four
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fingers, which oﬁgjna]ly pointed in the E-field direction, toward the H-field direction;

the ﬂl}lmb then points in the k-direction. In artificial materials with both negative £ and,

negative u, however, the Maxwell equations actually require that E, H, and k follow

the left‘-hand rule (Veselago, 1968). Such left-handed materials may ha’wc interesting

pm[zgr;:;)s saui]h as ;:ieiaﬁvehmgactive index arising from taking the negative root of
. (9:21), and could focus light t

;qooo; e ght to a spot much smaller than the wavelength (Pendry,

5.1.3 Plane Acoustic Waves.

Having explored quantum mechanical material waves and electromagnetic waves in the
form of plan.e waves, we examine in this section the appropriate form of plane Iattice
waves. We discussed in chapter 3 lattice waves based on a simple one-dimensional lattice -
chain model, trefiting atoms as discrete points. In the long wavelength range. we can
glcis :;igtilec :Itlobe e o : : i ‘ ?he lattice wave in
this 1 : ; ¥ acoustic wave equations. Our discussion of lattice waves
in this section will be based on acoustic wave equations, which resemble strongly the
electromagnetic waves dealt with in the previous section.

In the continuum representation, the acoustic wave propagation can be described in
terms of the local medium displacement, u, from its equilibrium position, or, more often,

the velocity v of this displacement,

du

V= —
dt

(5.41)

The displacement can be related to the strain tensor §, where the “=" above the symbol

means that it is a second-rank tensor, which can be re ix wi
con 2 presented by a (3 x 3) matrix with
9 components, S (i, j =1, 2, 3), calculated from 4 ) mme
1 fou; Buj;
S, )= - (—+ —L
0 =3 ( s ax‘_) (5.42)

The strain can be further related to the stress tensor @, which is again a second-rank

tensor, thrci.t the generalized The force acting on any surface with a norm

n is F.= oen, where the product of a tensor with a vector is carried out using the
following matrix product rule:

Fy Oxx Oxy Oxg ny
Fy Oyx  Oyy Oyz | | ny -(5.43)
F, Oz Ozy Oz nz

Using egs. (5.41 )—(5.43) and Newton's second law of motion, a relationship between

él?e stress tensor ant:l displacement can be obtained and finally expressed in terms of the
-a::placement ;felocnty. The acoustic wave equations thus obtained in their general form
‘are very complicated in an anisotropic medium with dampine (Auld

Constitutive relationshi i e e
tensor and the viscosity tensor (representing damping), both are fourth-rank tensors with

between the stress and the strain involves the elastic stiffness
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where eg. (5.49)A_deﬁnes a transverse acoustic wave with displacement direction
perpendlcular to k, and eq. (5.5Q) denotes another transverse acoustic wave with dis-
placement normal to both a and k. Based on the displacement velocity, components of
the stress tensor can be calculated from [

81 components, although symmetry requirements render many of the matrix components:
to be zero. We will not list the acoustic wave equations but focus only on the sgcia!.-_
ic with no damping, for which only two constants are =
denoted here as Az and iz, are’
ave equations are significantl

case when the medi
needed for the stiffness tensor. These two constants,

called the Lame constants. In this case, the acoustic W

“simplified. In particular, if we assume a plane wave of the form v exp| —i (@t — kker)| : Orx ol et BT 08 o O i 81, /2
where k is the magnitude of the wavevector and k is the unit wavevector, the acoustic: Tyy "1 Sehs %0 0 0 a::x/ax
wave equations lead to the following eigenvalue equation (Auld, 1990) 3 | oz S e L 0 0 vajai
i k ; g e (s A ik a o]0 ( : 5.52
e+ (-8 Optpnkdy, Ot pkk i) [ R el e - | | a5 (5.52)
K (AL + pr)kykz C11k§ +p(l— k%) (A + pL)kyks Jx; 0 0 0 0 084 = gvx/gz + guz{'ax
(AL + pr)keky O+ uokeky ekl +pi( -k 44 | | 9vx/dy + Bvy/ox
:‘ 9 Vx : s 44) .Where 12 =diAL' anfi C44 = PL. Equaﬁon (5.52) is a form of the Hooke law for an
y | = pw” | Yy 44): + isotropic medium without damping. The symmetry relations Oxy = Oyx, Oy; = O
vz v, e and 0y; = 0 can be used to obtain all nine components of the second-order stré:s’

tensor.
. The_ time-averaged power carried by the acoustic wave can be calculated from the
acoustic Poynting vector [W m™?] o

where ¢i; = Az + 2ur. The above ei envalue equation determines the dispersion:'_

relation between o and K, and is called the Christoffel equation. i

Consider a plane transverse wave propagating along the z-direction and vibrating in

the x-direction,

_ ! 3 ‘
| Jo=—3Re0"e0) (5.53)

- ATe—i(wt—kTZ)i (5.4551_'
which i§ again similar to that of an electromagnetic wave [eq. (5.38)] and of quantum
mechanical material waves [eq. (5.6)].

‘. The above discussion on acoustic waves and electromagnetic waves is clearly very
_sk-etchy and also mathematically involved. The main purpose is to get the reader familiar
with the plane waves propagating along an arbitrary wavevector k direction; as repre-
sentec'l by eq. (5.3) and the flux carried by the plane waves. In the next section, we will
examine how these plane waves behave at an interface.

Substitutihg eq. (5 45) into (5.44) leads to the following solution

prk% = pw® or = vrkr

i

i;-t =

= (r/p) 1/2 {5 the velocity of the wave. There is an identical transverse wave
edium is isotropic, as is the case when we consider.
the basis of lattice-dynamics calculations.:

where vr
vibrating in the y-direction since the m
phonons in three-dimensional crystals on
A longitudinal wave that vibrates along the z-direction,
| ~iar—k2)g (5.47)

Ui

Am iR

£
,?
ii

e
e s

vy, =Ape
also satisfies eq. (5.44). Substituting eq. (5 A7) into (5.44) yields the following dispersion 38

relation

5.2 Interface Reflection and Refraction of a Plane Wave

geﬂec?ed and refracted. In this section, we will determine how much of the incomin
wave is reflected and how much is refracted, by imposing boundary conditions for thesi
wa-ves. 'The reader will find that although the electron, photon, and phonon waves are
quite d}fft_erent in nature, the expressions for their respective interface réﬂectivity and
transmissivity, which we will define soon, are similar.

kzcll = ,Oa)2 or w = vrkp, (5.48)
where the longitudinal wave velocity v, = (c11/p)V* = (AL + 2u)/p1' /2. Thus, 32
unlike electromagnetic waves, which are transverse and always have the ele:ctric field
E and the magnetic field H perpendicular to the wave propagation direction k, acousti

‘waves can exist in both transverse and longitudi Sound propagation in gases is
a longitudinal wave. For a plane wave propagating along an arbitrary direction k, we

can express the transverse and longitudinal plane waves in the general form 5.2.1 Electron Waves

7= At an interface between two materials, an electrical potential generally exists as shown

vry = AApre @R (G o k= 0) (5.49)
m LS ‘ ) ( . _ i © in figure 3.28. We examine the tra  torf
—i(wi—krker) (5.50) .~ Iepresented by a step potential as shown in figure 5.1. Although the more general

vr2 =4 x kApe

—i{wt—k Rer) (5.51) case of a wave with any arbitrary angle of incidence can be treated, we focus only

v, =kALe on the normal incidence case, that is, when the wave is traveling along the z-direction.
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POTENTIAL
r'y P,
_—
¥, Us
—_
Figure 5.1 Reflection and transmission ¢
of an electron wave at an interface, N .
caused by the potential barrier 2
at the interface. 0

The wavefunctions of the incident, ¥;, the reflected, ¥, and the transmitted waves v,
can be expressed as

Wy = Age @D g = A oiOHhD g, = 47 R) (5.54)
| R 13 £

where k; and k; are the electrori wavevectors in the two media, respectively, and

ICE - |2mE - 2m (E — Up)
w=%,k1= T 25 72

These wavefunctions have been obtained in sections 2.3.1 and 3.2.1. Us.ing‘the b.ou.nda.ry -
conditions on the continuity of the wavefunction and its first-order denvlanve, similar to
eqs. (3.25) and (3.26), we obtain the reflection and transmission coefficients

— A 2k,
r=é£=kl kzandt— ‘
A; ki + k2

The corresponding reflectivity and transmissivity of the particle flux are

(555 o

1 (5.56) |
A,‘ k1 + k2 g

2

S |ki—k
R="L=

Ji ki + ko
Re [k A:AF] =8 Re(klk%) oy
Re [k A;Af] I+l

(5.57) &

ik
o

where the incident, reflected, and transmitted particle fluxes (J;, I, and_ J;) are calculated
fm}\!;'ligﬁ(;-% Up, it can be shown that R = 1 and © = 0, which meai_ls that ;.gll_eﬁlggt.j:gng 3
gté.xﬁﬂami(total reflection). In this case, however, mpmwm
as one can easily show by substituting k; from eq. (5.55), wh}ch ﬂﬁs—wﬁa ]
when E < Up. into eq. (5.54). The wavefunction ¥, thus obtained decays
from the interface but is nonetheless not zero. This transmitted wave, however, does not
carry a net particle flux across the boundary (J; = 0), and it is called an evanescent
‘um:g. which will be discussed in section 5.4. _ .

When E > Uj, electrons will be partially reflected and partially uam_n.mtedt wh.ercas _
classical mechanics would lead to 100% transmission without reflection. Mfﬁung a
mundane daily analogy, this means that if one throws a stone at a wall, there is some
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probability that the stone will be refiected back even if it is thrown higher than the
wall. Such a scenario is clearly contrary to our common experience but is possible in
the quantum world for very small particles such as electrons. In fact, the reflection
phenomenon occurs for all waves, as we will see later, Thus, wave mechanics differs

significantly from particle mechanics at a single interface.

5.2.2 Electromagnetic Waves

The reflection and refraction of light at an interface is a more familiar process for many
readers, and shares many similarities to the behavior of electron waves at an interface.
Although we considered only the case of normal incidence for electron waves, we will
treat here the more general case of oblique incidence of an electromagnetic wave onto
an interface. As shown.in figure 5.2, a plane electromagnetic wave propagates along
direction k; (wavevector direction) and meets an interface with norm #i. The reflected
wave and refracted wave propagate along the k, and k; directions, respectively. We call
the plane formed by k; and fi the plane of incidence, and the angle formed between #i and
k; the angle of incidence. The electromagnetic wave is a transverse wave, so the E-field
and the H-field can have any orientation in the plane normal to k. We can decompose
the electric field into two components, one parallel to the plane of incidence and the
other perpendicular to the interface. When an electric field is parallel to the plane of
incidence, as is the case of figure 5.2, it cannot be parallel to the interface unless the
angle of incidence is zero. Its conjugate magnetic field component, in this case pointing
out of the paper, is perpendicular to the plane of incidence and is thus always parallel

to the interface. This wave is called a transverse magnetic wave, or TM-polarized wave.

Sometimes the notations p (parallel polarized) and / (relative to E) are also used. If the

electrical field component is perpendicular to the plane of incidence, the wave is called

atransverse electric wave or TE-polarized. Notations TE, s (perpendicularly polarized),

and L are often used interchangeably. We will limit our discussion to positive media,

that is, those with refractive indices of the form of eq. (5.24) for which E, H, and k obey
the right-hand rule.

i Symbol Convention:

ke @ Field Going Out of Paper
E, & Field Going Into Paper

E-Field In the Plane of Incidence:
TM Wave = // Wave = p Wave
H-Field In the Plane of Incidence:
TE Wave =1 Wave = s Wave °
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We need to establish boundary conditions for the electric and magnetic fields to
determine the reflection and transmission at t
equations toa very thin control volume surrounding an interface, the following boundary
conditions can be obtained (Born and Wolf, 1980) ;
(5.58)
(5.59)
(5.60)

(5.61)

fie (D2 —Dy) = ps
ix E—~E)=0
fe(B,—By)=0
i x (Hy —H) = Js
1] are the net surface charge density and the surface

the total electric fields on the two sides
otal magnetic fields on the two sides

where ps [Cm™2] and Js [Am
current density, respectively, E; and E; are
of the interface, and similarly H; and H; are the t
of the interface. To obtain the “total” E and H for side 1 of figure 5.2, we need to sum up

the incident and the reflected fields. Equation (5.58) means that the difference between
the normal components of the electric displacements across the interface must be equal
to interface charge density, while eq. (5 .59) means that the tangential components of the
electric field must be continuous. Equation (5.60) says that the normal components of

the magnetic induction must be contimuous, while eq. (5.61) means that the difference

of the tangential components of the magnetic field across a surface equals the surface

current density.
‘With the above boundary conditions,

we can determine the amount of reflection

and transmission of an incident electromagnetic wave onto a surface. We consider
a plane TM wave incident onto a surface at an incident angle 6;. The wavevector '
directions of the incident, reflected, and transmitted waves are (sin8;, 0, cos6;)
(sin6,, 0, —cos#6;), and (sin6;, 0, cosB;), respectively. Using a plane wave of the :
form of eq. (5.25), the incident, reflected, and transmitted electric fields can be

expressed as

Sy o
By e [—-iw (; _ myxsin6; +m1zcos ,)] (5.62
co
inf, — 0
Ej; exp [—iw (: e g ’)] (5.63) ;
= :

. - p 5
E;exp [—iw (t _ St O = Rae Rt ')] : (5.64)
T : 0

temporarily assume that the refractive indices are real. The

respectively. Here, we
the electric field is polarized parallel to the plane of incidence:

subscript ¢'//”" means that
(TM wave as shown in figure 5.2).

Some readers may ask how to
The answer is that a correct assumption of th
E, and H, follow the right-hand rule. The sig
the directions. Notice the sign change in eq. (5.

determine the direction of E, and H, in figure 523
e direction is not important as long as both
ns in the final results will take care of
63) before z in the exponent due to the.

he interface. By applying the Maxwell §
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gha-ngz in tl;e wa(vsengr)opagation direction for the reflected wave. Based on a similar
erivation of eq. (5.29), the magnitude of the magnetic field o G it
* the plane of the paper, is related to the electric ﬁel%i by et Lo

n
H,= —E/(f S '
= e /( Qrwa:d), H, = _EE I (backward) (5.65)

:Vn};iei-z ;rhai : ef:i)rward” denotfs waves propagating along the positive z-direction (incident
= hegative Zv;(/ia?vest)i andthbackt\:vard” applies to the reflected wave propagating along
-direction, the subscript “y” of H denotes that H poi i
to the plane of incidence, in the y-di cti i SR
h y-direction, and E is the magnitude of v
, : g ector E /.
(1; :ihgem;lee gSAfivzeSisgl;o\? the r(csﬂzt;t)e(; magnetic fields pointing into the paper becaug/e
in eq. (5. or the reflected wave. In reality, th i
. { . ! , the actual
;:Isla:f: ir;lay be- 1tn the re}?ected electric field rather than the magne}t,ic field. As f:ﬁg
consistent with the m i i nd r ill gi
o athematical operations, the end result will give the
< zVe con.51der a surfaf:e free of net charge and current, and take this surface as z = 0
ﬂf)e :;i:lg;l:;tte thef Iglagmtudes of the reflected and refracted fields, we need consider o_nl);
y of the tangential components. The boundar nditi
' 3 ! . y conditions on the no;
Zg;nﬁggir;tst Ir;lhll)e aftouri}atfliczigy satisfied. Applying the continuity of the electrir; fll-gllzl
t e electric field of a TM wave is not i ’
use the component along the x-direction, e e e

‘ [ mpxsing] . :
cosg; Ey; exp [zw—]——_‘] +cos 6, E . exp iw&tsﬂ
co co
— cosB,E/exp | i nax sin 6; .
 E p[zw——co (5.66)

Whele weE haVe dIOpped the faCtOI Of e ‘ since it 1s contalned m a.ll the terms and
- y E
A
.Cancels out Slnce X Cal‘l ta-ke an Value the above equatlon 18 Vahd Only When the

n1sinf; = nysinf, = no sin 6, (5.6?5
which leads to the Snell law for reflection and refraction
0; = 6, and n sin 6; = ny sin 6 (5.68)
Substituting eqs. (5.67) and (5.68) back into eq. (5.66) leads to .
cosB;Ey; +cosb; Ey, = cos 61 Ey, (5.69)

- which gives o i i
ch gives one equation relating Ey;, Eyr, and Ey;. Another relation can be

bt : B
. Obtained on the basis of the continuity of the tangential components of the magnetic

) ﬁ N - .
wt:dczt the ‘mterface, since there is no surface current, On the basis of eq. (5.65)
n write the continuity of the tangential component of the magnetic ﬁeld’

- €q, (5.61), as

mEyi —mEyr =nEy (5.70)
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Solving egs. (5.69) and (5.70), we obtain the reflection coefficient rj and transmission 8

coefficient t for a TM wave as Transmissivity: 7 = S _ i g ees )

- _ 2
Syiz  Syi Re(Nf cos ;) lt//l

e Re(Nzcos )
Re(Nj cos 6;)

t=

yr _ —nacos i +nicos O (5.71)

ry = __-—E”,' = n, cos 6; + ny cos 6, i

leL)?

Equations (5.75) and (5.76) apply to the cases when either or both of the two media

Epn 2n1 cos 6; i
are absorblr_lg. When medium 1 is non-absorbing, it can be shown that

ty = = 5.72
"=E ; npcosf; +njcos 6, ( )
Vi

R =
e +7t=1 677
or and TE waves. However, when medium 1 is also absorbing, it can be shown

that the above intuitive ex ion i
’ ¢ at pression is no longer valid. This i i
of the incident and reflected waves (Knittl, g1976) R e o e

At normal incidence, the reflectivity can be simplified to

Similarly, for a TE wave,

8; —
L oosby_matos (5.73)
nycosf; + nacos 6

5

2n1 cosb; I (5.74)

t] =
n1cosf; +nycos bt

ki —~ky
ky + ky

_(Na—m 2
Ny +ny

i (n2 —n1)? + (k2 — k1)?
(n2 +n1)? + (k2 + k1)?

R=Ry=R, =

Equations (5.71)-(5.74) are called the Fresnel coéﬁ‘icients of reflection and G '78)
transmission. ’ '

The above discussion assumes real refractive indices for both media. If any of the |
media is absorbing, one can prove that the expressions for the Snell law and the Fresnel.

Iﬁ:géi 1d“f;l1;ic;al to e?. (5.57) for the reflectivity of an electron wave. For an air/glass
: : n = 1 forair and n =~ 1.45 for ‘

j w] or 2 . d glass between A = 0.5

the reflectivity at normal incidence is ~3.4%. For an air/silicon interface (?:1?0? .Sﬁi L;nz

: : i ] 183( refraCtiV between }t = 0.5 and 0 6 u:m) the reﬂec .'.F' y l.s e 3(5% at not Illa] [l[c,ll!ell‘;{:
. > tvit inci
. 1 ![ T] . . 1- | FC[ example, the Sne” laW becon]es ] g oty §] reﬂectivity for typical dielectric d al . llals a‘S
Iﬂ ﬁ ure 5 3 we ShOW th ! and met |iC mate; i

ﬁ f the angle Of lnCIdenCe. T‘h ][at “le It Ie(:“Vlly de!]e]l(ls on
lh polarl on o e IDCIdellt Iadlatlo‘ﬂ. Ihe reﬂectl\ﬂty fOr a IIV{ Wave can be Zero fOI
[+ zatl f th K

dielectri ] :
dielectric materials. From eq. (5.71), this happens when the numerator equals zero, that

nysin 6 = Npsin 6. If Na 18 complex, the angle of refraction @ is also complex.

What does a complex angle mean? To answer this question, one can substitute the

complex angle into the transmitted wave exgression, eq. (5.64), and see that in this case .

the constant amplitude surface does not coincide with the constant phase surface. Sucha
\Wmammhmm phase surfaces is called an inhomogeneous —— .
wave. The proof is left as an exercise. ; i Gold (wavelength=10 um, TE) = L
The Fresnel coefficierits give the magnitudes of reflected and transmitted fields. To - = 7
calculate the energy flux going across the interface, we need to examine the Poynting I
vector. For a TM wave, we have > 0.8
S—IR H* lRE ‘“'IR E:H})i 2 [
{}_E e(E x }=—~§ e( xH_,.)X'I"E e(Ex }r)z LGJO.G-
P ap? siné % + " E%cosf2 5
= 1 —_— 3
2uco " 2pco " ‘ ‘ x 04
= (SR +(S:)2
: _ 0.2
Since only the component in the z-direction goes across the interface, we define the L - Dielectric material (n=4, TM)" ~ 5 I’ -
eflectivi missivity, based on the power arrivi r unit area no! o [ ~ r:;mslt:rl 1
interface, S; ., 88 5 0 === S RPN BT S 1
I 0 20 40 Ho .
' i 60 80
Reflectivity: Ry = %f—z = L;_Z_ = |ryl? } (5.75) F‘ INCIDENT ANGLE
T ' e igure 5.3 Reflectivity as a functi inci
Ry =|r1l and for gold with N = 10.8 + ; 1 .‘:;mf the angle of incidence for a dielectric material withn = 4
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— 7/2 — 6;. Substituting this condition into the Snell |
dence angle, 0z, at which the reflectivity of

176

is, when sin(26;) = sin(26;) or 6,
law, eq. (5.67), leads to the following inci
the TM mode is zero,
tan g = na/n1 (5.79)
This angle is called the Brewster angle. At this angle, only TE waves are reflected. This’
phenomenon can be exploited to control the polarization of white light and is also the
cause of shiny dark (seemingly wet) surfaces on the freeway on a sunny day.
Another interesting situation is when the refractive index of medium 1 (inci-

dent side) is larger than that of medium 2. Because the maximum angle of the
gle of incidence above which no

refracted wave is 6; = 90°, there exists an an
real solution for 6; exists. This critical angle happens when, according to the 7
Snell law,

1y sin 6, = ny sin 90° or 8, = arcsin(nz/n1) (5.80)

als one; that is, all the incident energy is reflected.
and is the basis of waveguides that confine the |
fiber and a semiconductor laser. An optical |

fiber has a core region and a cladding layer {figure 5.4(a)]. The refractive index in the
core region is higher than in the cladding layer. If light is launched into the fiber at an 3
angle of incidence (relative to the core/cladding interface) larger than the critical angle,

the light will be bounced inside the core only without leakage, thus traveling a long

distance along the fiber if the absorption coefficient of the core is small. However, if”
/le, the light can escape the fiber

the angle of incidence is smaller than the critical ang
core. In a semiconductor laser, light is emitted through electron-hole recombination’

inside the active region. The emitted light spreads over the core region and is confined
by cladding layers that have a lower refractive index than the core [figure 5.4(b)]. We
mention here, however, that even though the reflectivity is one and transmissivity is -
zero for a wave incident above the critical angle, there is still a nonzero electromagnetic’

Above this angle, the reflectivity equ
This is called total internal reflection
photon waves laterally, as in an optical

@

des based on total internal reflection. {a) An optical fiber is

Figure 5.4 Examples of wavegui
r in concentric cylindrical configuration.

made of a core (a few microns wide) and a cladding laye
{(b) An edge-emitting semiconductor layer has a planar geometry. Light is emitted inside the
quantum wells (a few tens of angstroms) through electron-hole recombination. The emitted ligh
is confined inside the core (~ microns in total thickness) by total internal reflection effects. Some
of the emitted light comes out from the edges because the side surfaces (mirrors or facets) has

nonzero transmissivity.
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wave in medi is i
um 2. This is called the evanescent wave, similar to the evanescent electron

wave menti ned m the pre 10U on. VVC W’I“(I[ cu €V wavi
V. W. € IMe: (0) ' s section i
scuss the anescent wave 1n more

Example 5.1

:Ogﬁa\llrnlcais;; with a b<‘eam diametgr of 1 mm and wavelength 0.5 wm is directed at
nce to a piece of aluminum. The complex refractive index of aluminum

at 0.5 pmis 0.769 + i6.08. D ine the distributi
0w ; etenmfle the distribution of heat generation inside the

Solution:
ﬂf:f:;?blzzc::ln ;g(;rgl .s?;i)é we knowa]ihat the Poynting vector, thus the intensity of
» ’ — o Do
e e ag) ntially inside the film. The distribution of the laser
I=(1-Re ™ [Wm?] (E5.1.1)
where x is the coordinate perpendicular to the surface, R is the reflectivity, and o

,the abSOrption Coefﬁcient The deC] case ‘[]l ].]lte]lS“ y 1S converte
- . . .
5 ) A . . nVErt d nto heat. SO, the

g, = dl - :
§=-—=U-Rale ™™ W m™] (E5.1.2)
We can calculate R and & as
] 24 ~0.23] — 6.08i |2
1+N 1.769 + 6.08i =0.923 (E5.1.3)
y o dme 4w x 6.08 "
 Ciswiety - o x10m (E5.1.4)

Substituting these values and I; =
Wm 2
answer as

] 0.5 W/(r x 0.0012/4) = 6.34 s
. 0.5 .00 = 6. 10
into the heat generation distribution expression leads to thexﬁnal

=1 12 - -3
g=175x 1012 ¢ [Wm?) (E5.1.5)

Comment. Because « i
. is very large, heat i : .
the surface. Ty larg absorption occurs only in the region near

With i ivi
the expression for the surface reflectivity and transmissivity, the emissivity

of th :
Senﬁ_?n;ungice ﬂf t the same Wth‘elength can be readily calculated. If medium 2 is
and thus the ab e energy transmitted into the medium will eventually be absorbed

absorptivity equals the transmissivity at the interface. From Kirchoff’s

law, the emissivi
s sivity equals the absorptivi Ll o T
* wavelength, : rptivity at the same incident direction and the same
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5.2.3 Acoustic Waves

The reflection and refraction of acoustic waves can be treated similarly to the g
electromagnetic waves. The continuity requirements for acoustic waves are that the
displacement velocity and the force at the interface must be continuous: :

ZVl =ZV2 and Z;l 9ﬁ=2§20fl

the interface and 5 ofi is the force acting on the interface, 3
the summation is over all the fields (for example, the
ide. While continuity of force is always required, even 3 ‘
is not always true

interface can have 8 ‘

(5.81)

where fi is the norm of
as expressed by eq. (5.43), and
incident and reflected) on each s
in a lattice dynamics simulation, continuity of displacement velocity
at the atomic scale. For example, the two atoms at i

different displacement velocities. In the long waveleng

assumption is reasonable and eq. (5.81) is valid.
Using the boundary conditions and plane acoustic waves of the form of egs.

(5.49)—(5.51), one can again derive expressions for the reflectivity and transmissivity of
acoustic waves at an interface as for electromagnetic and electron waves. The derivation, ?
however, is more complex because acoustic waves have three polarizations and one must -
consider the possibility of coupling among these polarizations—for example, whether
a longitudinal wave can excite a transverse component in the reflected and transmitted =%
waves (Auld, 1990). The simplest case is whe: iumis i i the incident -

wave is a fransv wave with displacement polarized in the direction perpendicular to ’
the plane of incidence (called a horizontally polarized shear wave or SH wave). In thi
case, only one SH reflected wave and one SH transmitted wave are excited. From the .
boundary conditions and following a similar procedure as for optical waves, one can &g
derive the reflection and transmission coefficients for an SH wave as

th limit, however, the continuum

4

U Z1cos6; — Zycosb,
L Vi = ZycosB; + Zcoso; SR
(5.82) -
i v 271 cos b; e
Y ~ Z1cos8; + Zycosb,

where Z = (pcas)'/? = pvr is the acoustic impedance, which plays a similar role to 38
dentical to the Fresnel coefficients of -

the optical refractive index. These equations are 1
TE wave [egs. (5.73) and (5.74)] with the acoustic impedances replacing the refractive
indices. The relation between the incident angle 6; and the refraction angle 8; is given

by the Snell law, which assumes the following form for an SH incident wave:

sing; sinf :
= — (5.83)
Ur1 vr2
On the basis of the reflection and tranmission coefficients and the acoustic Poynting,

vector, eq. (5.53), one can calculate the energy reflectivity and transmissivity foracoustic

waves. At normal incidence, the acoustic reflectivity for an SH wave is

21—222

5
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MEDIUM 1 . i
ANSVE MEDIUM 1 R
INCIDENT s INCIDENT | S
PHONON RANSVERSE PHONO':JT !
1
1

(&)
Figure 5.5 Reflection and refraction of acoustic waves in (a) anisotropic and (b) isotropic media

forlongitudinally polarized waves (L waves) or tr :
: L ansversel ari : 3
yoe the plane of incidence (vertically polarized sho.ﬂ:em.\.re )'P;:é oieg\:’vf::vse‘:;m e

wa‘lj:: :Su\'(m:::vege \:rja;e polariz‘ed 1n the plane of incidence (vertically polarized shear
o e andfora longitudinally polarized incident wave (L wave), coupling of
erent polarizations can occur. In general, an incident wave can excite I.hree e
;.vn:ves and three transmitted waves, as shown in figure 5.5(a) i ic zef_leﬂﬁd
. o -3(a). For isotropic media, the
0 transyerse waves-are-degenerate, tur i
Sl . gl

sing; _ sin6 _ sinfr _singy _ sinfyr
Yi vLy vr1 e

s (5.85)

where subscripts r and  represent the refl
ran ected and transmitted
T r;pre-sent lopglmdlpal (L) and transverse modes (SH and SV)Components, s P
or isotropic media, the reflection and transmission coefficients can be found by

_ solving a 4 x 4 matrix equation (Auld, 1990). An example of phonon reflectivity

:?t(iiestrz?sr‘rlusswny at an int‘erface between two isotropic media with acoustic pro
imilar to those of Si and Ge is shown in figure 5.6 (Chen, 1999). It sﬁovf/)s

1.2

T T e e L
1.0 [RANSMISSIVITY _ _ REFLECTVITY
N » e e
> g p
Sost J 10.15 2
= -—GD ] 3
P06 F ! Jo40 S
2.
. R ‘/l/ REFLECTVITY —0.10 £
<1l > 1 ™ ]
boaf % i ]
ME :
o 'l -
0.2 - D——ak 1
L I. 1 i
L — o ———— ]
5 iz [+ TRANSMISSIVITY ]
+ g,
0 30 60 0

INCIDENT ANGLE (DEGREE)

. ||gll|e 5 6 T 1 V) \' e for an
. Phonoﬂ transmissi lty and reflecti ]ty at an interface similar to Si and G fi
a

|

m acoustic w inci
ave (incident from the Ge side) with the displacement vector polarized in the plane of

- incidence i inci
g 10C {Chen, 1999), that is, an SV incident wave. Note that L waves are also excited
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that part of the transverse incident wave is converted into a longitudinal wave. Thi
is called mode conversion. Total reflection of acoustic waves can also occur and':
several critical angles can exist, as one can infer from eq. (5.85), for refracted wave
of different polarizations. In figure 5.6, the total reflection of an SV wave from
germanium-like medium into a silicon-like medium occurs at 33°, Above this angle

- T TEMPERATURE

L 72 Bouissug

:fﬂﬂ Medium 1| Medium

an evanescent wave exists in the silicon side, similar to the evanescent electron an
photon waves. s T.a EMITTED PHONON
(a) ® —
(e}

Figure 5.7 ransmissi i
Fig (a) Transmission and reflection of phonons at an interface. (b) Coordinate system for

thermal boundary resistance evaluati i
_ . ation. (c) Difference be i
- and the local equivalent equilibrium temperature. e L onn IRER

5.2.4 Thermal Boundary Resistance

_'{‘_tg_reﬂection of waves reduces the number_of forward-going carriers (electron
phonons, and photons) and is thus a source of resistance to the carrier flow. For the?
interface reflection creates an additional electrical resistance. For

in eq. (5.86), we will convert it into an integration using the differenti
! - ML 5 1B LI
concept outlined in section 3.4.4. For an isotropic medium, we hav

current flow, electron

photons, hi sed as radiation shields for thermal insulation
as exemplified in multilayer thermal insulation materials (Tien and Cunnington, 1973).
The reflection of acoustic waves results in a resistance to heat flow, called the ther-

@

mal boundary resistance. This is well known in cryogenics, where thermal boundary g2 = f f f Tiavghof (@, Tey) Dy (w) do lae
resistance was first discovered to exist between liquid helium and solid walls and ﬂ1.>?;-r" S 4 1
is called the Kapitza resistance (Kapitza, 1941; Swartz and Pohl, 1989). The same N . e s
phenomenon also occurs for two solid interfaces and was first treated theoretically by > O ] x/2 wpy  NELOC M W S8 AS il 2l
Little (1959). = > 2l 4_fd¢1 fsi!‘l 61d0, f vy cos 6 1‘ 1)

‘We take figure 5.7(a) as a model system, where a heat current flows across the & . o 0 AN 1712(@, 61, O)A0f (0, Ter) Diy@)des | N~

interface from medium 1 into medium 2, the media being maintained at two dif- i
ferent temperatures. We neglect the temperature drop inside each material due to i
phonon scatiering, but will come back to this issue in chapter 7. We first count the

(5.87)

honon heat flux goi m med i q1-s2 [Wm™2], which can be figure 5.7(b). We use the notation £; > 27 to
- ‘ - represent the half- g
written as PaE toward t.he 1.nterface from medium 1. We should point out howz\feip?ﬁetsild vl

- . y v _pcat ﬂu?( from medium 2 to medium 1. The net h =1 631513 2 hqnon

i - kesia it ) Y eat flux from material 1
. Is the difference of the two into material 2
q2=) | I D vahotia f(@, To) (5.86 : :
p=1 } =k ky=—kmax 2=0) A B

Hans misSien

:  @= ff [fvl cosbyhwf (o, Te)t12(0, ¢1'91)D1(w},’4:rdm]d9]

21227

where T, represents the temperature of the phonons coming toward the interface an
flw, Ta) is the Bose—Finstein distribution for phonons at Ty, and 72 is the phonon’ . - f / [ /
transmissivity from medium 1 into medium 2. The summations are over x

vectors of kg, ky. and positive wavevector of kg, so that only phonons CO i _
the interface are counted. The maximum wavevector is 7r/a: that is, the boundaries (
the first Brillouin zone. Equation (5.86) is a mixture of the phonon concept we learnt in’
chapter 3 and the acoustic wave propagation discussed in this chapter. The transmissivity
can, for example, be calculated on the basis of the discussion in the previous section. Th
term hof(w, T,1) inside &q. (5.86) represents the average energy per quantum state and
the summation over the wavevectors denotes the allowable quantum states of medium
within a volume V;. The division by the volume is to obtain the energy density per unit

vycos Orhwf (0, T 2)t21(@, P2, 62)D2(a))/4ndw] dQé (5.88)

| Q<27

< Where we have suppressed the integration limits and used d2 = sin 6 d8 d¢ fi
= or

¢ simplicity in notation; details can be
el Hon; worked out by following eq. (5 thermal.
g_@_zi tilibrium, that is, when T,; = T3, the net heat flux is zero, sgo tgat( T

[ [f v cos B hwf (v, To1) 12 (w, ¢1-91)Ds(w)d_mj4:::| dQ,

volume. These phonons are propagating toward the interface at a speed v;;—the phonon B j‘ [ f ;
velocity along the z-direction. The summation OveLp denotes the phonon polarizatio % sl vz cos phof (w, Ter) 21 (w, ¢, 92)-Dz(a))dw14:r:| dQa  (5.89)

that is, 3m if there is. To carry out the summation over wavevectors
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Equation (5.89) is an example of the principle of detailed bz'xiance, w!:fich requires .that 4
no net flux of any kind (heat, particle, or ch e interface i
equilibrium. Using eq. (5.89), we can write eq. (5.88) as

qg= f [fv100591hw[f(w, Te1) _:;-' ]

Q=2

— flo, Ta)ltiz(w, ¢1, 91)Dl(m)f4ﬂdW]d91

Thus, with the help of the principle of detailed balance, we can t?xpr;shsj the eg;x._
with m:perlies in one of the two media plus, of course, the tra;sm:sxf.wxzy_. 8 gEr5 903;
s‘i_mplﬁ"ﬁss the calculations. When the difference between T, and T is small, eq. (.

can be further written as

i
g Te1 — %)
q= R,

. 2 w—1
where R, is the specific thermal boundary resistance [Km* W],
b3 d mf2 @pl

f(w,T)
..L. = Lfa@] fdel f v cos by sinelhanz(w,fﬁl, 61)D1(w)dw

Figure 5.8 Thermal boundary
resistance at low temperature
(Swartz and Pohl, 1989; courtesy
of APS Associate Publisher).

inaterials. A few atomic layers mixi i te interface that no longer scatters

phonons specularly.

* Despite intense research, there is no g
boundary resistance at hi
mismatch model (Swartz and Pohl, 1989),
the interface do not really bear any relatio
cannot tell which side they come from. Th

0 0 0

1 @ny i ‘/ \S_r/-"l'\"cp:-(-' !
< 5.92
: f f 2 Ci(@)ria(@, pr)de u1dml .- o (1502) %

where u = cos @ is the directional cosine and Ci (@)= hwD(w)df /8 Tf] is t.hci :0
(mode) specific heat. The second equation in (5.92) used the fact that for an :

i is i ent o
medium 77 is independent of ®. When the temperature 18 low and 7 is independ j.

enerally accepted wa 0 herma

» One rather crude model is called the diffuse
which assumes that phonons emerging from
nship with their origin; in other words, one
is assumption implies that

I

0 0

Ru=mnrorl—1p =1y (5.94)

where the second equation comes from the energy conservation identity Ry + 75 = 1,

. ion.that We recall again that subscript 12 means from medium 1 into medium 2 and vice versa.
ﬁw‘ﬁ@wﬂm_ By substituting the above relationship into eq. (5.89) and further assuming a linear
@ t_h'spersion for each acoustic wave polarization, Swartz and Pohl (1989) obtained
J .
. i . (5.93) with 1/v3
because of the T dependence ofwﬂe‘agzeﬁzgdoﬁgde(ﬁnz r)csul!s 12 = m (5.95)
- issivity 7 is calc . : 1 3
ental results depends on how the transmissivi ]
Ezgzg?n acoustic wave relations such as eq. (5.82) generally agree well with expe

i odel is
mental results at very low temperatures, as shown in figure 5.8, and such a m _

L
called the acoustic mismatch model (Little, 1959). A.t higher tempe;ra';uhgesish;;vczei.
the experimental results deviate from the acoustic mismatch model. ]

.iyhere 1/v% comes from the product of the density of states [eq. (3.55)] and the velocity.

TJ]jLis relation is valid at low temperatures. At higher temperatures, a similar treatment
leads to (Dames and Chen, 2004),

e e transmissivi v U (T,) 1

resistance, calculated on the basis of the phonon t412(T,) = = 5.96
th‘e then::ili_tl boutlx}c?z? 2.3 lreguire:s that phonon scattering at the mterfac‘? be specular and T nU(T) + v Ua(Te) 1+ [v1Uy/vUy] S8
d;sctlzssih 1:‘ 'Se(t:he phc;n.m;‘ frequency does not change and the Snell law is obeyed, Thess
elaslic; that 18, 1184

piot Where U is the volumetric internal energy [eq. (4.73)]
conditions are satisfied at very low temperatures when the phonon wavelengths are long, & 1.

?

lengths & Wi 2

i i higher temperatures when the phonon waveleng

but azg moreddlfﬁ.cuk to satisfy altrafsfer are -cgmp_grable or shorter than the surface U= /’ Mo (0, T D () — f . i
contributing dominantly to h shorter 2 |

“ roughness. At room temperature, the average phonon wavelength i 0-20 A 1n mos :

0
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where (2 = cos 8 is the directional cosine and
\ . we have assumed that transmissivity i
H;d;pe(rllde.nt 'of angle ®. On the bas1s. of this equivalent temperature and the considerat}i,oz
of the ev%atlon of the phon_on density of states from the Debye model, Chen and Zen,
(2001) arrived at the following expression for the thermal boundary re;istance' ;

Chen (1998) assumed that the specific heat is independent of temperature and furthe
expressed eq. (5.96) in terms of the specific heat. Equation (5.96), however, is more
accurate and includes ail other simplified cases, including eq. (5.95). Using the Debye *
approximation, the ratio in the denominator of eq. (5.96) can be expressed as

_Ti=T 2=y mae)di + fo o (a)dia) /2

nty 1/} §2 &’ flo Todo
wUs  1/v? D2 ()3 f(w, TeYdw
/vy o f e : q fol L[ 12 (1) 11 C1 (@)dwlpdis (5.101)
We should caution, however, that the diffuse mismatch model discussed above isa very N Ry _ ;
: : - T ave dropped the subscript “e” b
terials are very similar. In \ Tipt “e” because the temperatures are define
o materials L as a measu energy density, not on the properties of the comin(gl

crude approximation and is clearly not vali

this case, the transmissivity should appma;hnne_mnmhtﬁsﬁlmedimm@im
_aggroaching 0.35.
and in the limit of an identical material

The case when the two materials are similar,
with an imaginary interface, poses another dilem r the usual thermal boundary’
resistance expression defined on the basis of eq. (5.91). In_this limit, the thermal
boundary resistance should clearly be zero but eq. (5.92 ives ite v 3
if one sets 7jp = 1. Thi flemma (Little, 1959) arises from the temperature defini-.
tion used in eq. (5.91). So far, we have been careful in saying that T, represents the

temperature of the phonons coming toward the interface and avoided discussing what

g;w:fl :::c icril?_tﬂ;i,c% ais in sq. (5.91). Strictly speaking, the spectral specific heat should
% but, under the assumption of a small tem i i
erature
be evaluated as the average of the equivalent equilibrium tcmgerammsdmﬂemgmn;c;n, lsld:st' les,
gﬂzﬁh(ziégsl )i:e:;i:a;ot :cro th;ahrmal boundary resistance when the transmissivit};
. one, that is, when no interface exists. This resol
. ‘ . ves th
: ?:;EISI:S:S;H' g]. (5.912) that gives a nonzero thermal boundary resistance even wh:n thz
: vity equals one (Little, 1959). When measuring th '
401 — - al boundar ist
at low temperatures, it is possible to ancho =~y e e
: . s1 T temperature sensors so that 7',y and T
measured, so that eq. (5.91) is a valid definition. Most high-temperature ;:easurelilzeirt:

are the real temperatures of medium 1 and medium 2 at the i_nterfi.l(.‘f?- This is because ; _{)f thermal boundary resistance, however, ca d - and l
Iiehly nonequilibrium processjand it is hard to deling resistance values are obtained 0;1 o ano; :::an;::ir 57 e_________ﬂﬂlerénaj bound
rium T, Consequently,

temperatre. Referring to figure 5.7(a), we see that on each side of the interface there &

are three groups of phonons. For example, on the side of medium 1, one group is the
incoming phonons with a temperature T,1, the other group is the reflected phonons

leaving the interface, which has an energy distribution determined by the convolution of 4
the incoming phonon at T, and the interface reflectivity. The third group comes from
the transmission of side 2, with an energy distribution determined by the convolution of 2

phonons at temperature T,z and the interface transmissivity. The local phonon energy,

spectra at the interface are thus very different from that of the incoming phonons and 7§
distribution with a %

cannot be represented by an equilibrium, or close to equilibrium,

single equilibrium temperature (Katerberg et al., 1977). However, if these phonons wer

1o adiabatically approach an equilibrium, we could obtain the final equilibrium temper:

ature of this adiabatic system and will call this temperature the equivalent equilibrium

temperature. This equivalent equilibrium temperature is really just a mMeasure of th
local enerey density rather than one thal represenis Hc spectral characteristics of

energy distribution, but it is consistent with the local cguilibrium approximation used in’;
heat transfer calculations such as the Fourier law. Figure 5.7(c) illustrates the difference.
quivalent equilibrium temperature. 2

be related to the incoming phonon’

one should pay attention to using correct models to explain the experimental data

The thermal boundary resistance discussed here exi i :
1 - e exists even if the interface i

as lor:E as there exists phonon reflection at the interface. The orde-r d;:giiiptfiail;
such thermal boundary resistance is, according to eq. (5.101)(® ~ 1/(Cv)) where C.

is the volumetric specific and v i
pecific heat and v is the phonon speed, Taking C ~ 10° Jm ™ K~
at room temperature and v & 1000 ms™', the thermal bouudga\ry rf:.'sis!anc::;l is Een

~ 107°—10"% K m? W, consi i i
A stent with experimental data for nearly perfect i
. ; ; t interf:
: Eg;s;::c; gt 13{1., .20(};)9.313@?; ideal interfaces have higher thermal boflggary resistara:z::
aris, . Although the value of thermal b ary resi i
interfaces seems exceedingl i ALbs B e I AL
gly small, it becomes dominant for nanoscal i
_ : : e systems with
fh lea_rgd i:e r;l;r;l;)e;e?;eﬁzﬁcegt. Ftohr ef;icfmple, the thermal conductivity of superlattices in
ar to the film plane is found to be domi
boundary resistance. It should be poi } IR
. g pointed out, however, that the val
boundary resistance in a multila : i , Aty
ltilayer structure can differ from that of a single interf:
(Chen, 1998). In macroscopic structures, the thermal boundary resistancegat tl?eein:l;f

g
faces can l)e Hluch arger because thc two IIla[eIIalS are not 1n peIfeCt contact. we W 111

between the incoming phonon temperature and the e
It can be shown that the equivalent temperature can

temperature by :
5.3 Wave Propagation in Thin Films

Inthi .
e - nol: lfl;\xzst,otlll)ere are mulltlple interfaces. We should first emphasize that these thin films
. ¢ | ¢ an actual material. A thin vacuum b
B oL _ . ! space between two parallel plates can
e rr;;l::letre(;l athin film. These m?erfaces will cause the reflection of the incidelilt waves
. P thc: te1 w;wes can bc';: superimposed on the incoming wave to cause interference
e 1-lewa hea to the thickness dependence of reflectivity and transmissivity. One
phenomenon that may occur in thin films is tunneling, which makes the total

L
Ty =Ta —(Ta = Tez)f t12(p1)dii1/2
0

1
Ty = Top + (Te1 — Te2) / 01 (H2)d /2
0
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‘reflection phenomenon
tunneling processes can occur for photons,
will first examine the interference phenomenon.

be applied to tunneling processes, which will be discussed i

5.3.1 Propagation of EM Waves
There are three ways to derive a

r matrix method, as explained in figure 5.9. The field-tracing method,;

and the transfe:
nts each reflection and transmis-

figure 5.9(a), follows the trajectory of the wave and cou
sion when the wave meets an interface (Born and Wolf, 1980), using the Fresnel reflection 3

and transmission coefficients. This method is intuitive but cumbersome. Because all the #
forwarding waves in the same medium have the same exponential factor, we can sum-
them up into one wave with a undetermined amplitude and call this wave the resultant

wave [figure 5.9(b)]. Similarly, all the backward propagating waves in the same medium £S5

then four resultant waves in the single 3

can be summed into a resultant wave. There are
ide the film (forward and backward),

layer thin film situation, one reflected, two ins
and one transmitted, as shown in figure 5.9(b). The amplitude of each resultant wave
will be determined by applying the boundary conditions at the two interfaces. The
transfer matrix method combines all the waves (both forward and backward) in each
medium into one wave, and uses a matrix to relate the electric and magnetic fields
between two different points inside a medium, as shown in figure 5.9(c). Because the
tangential components of the electric and magnetic fields are continuous across the
interface when no interface charge or interface current exists, the transfer matrix method
can be easily extended to multilayers. We will therefore focus on the transfer matrix
method. :
Consider a TM wave, for example, the x-component of the electric field and the
y-component of the magnetic field inside the film, as a function of location z:

E,(z) = cos E+e!?® + cos G E~e~9E) (5.102)
Hy(Z) = _n_Z[E+ei¢(Z) _ E-ei‘P(Z)] (5.103)
- peo

X
r s

B
e

==

ny B o3
Pz

Figure 5.9 Three methods of treating reflection and transmission of electromagnetic field

through a thin film: (a) the field tracing method; (b) the resultant wave metho
matrix method. e

that occurs at one interface disappear. These interference and k|
phonons, and electrons. In this section, we g
The formulation established can also S8
n section 5.4. T

n expression for the radiative properties (reflectivity ! =
and transmissivity) of thin films: the field-tracing method, the resultant wave method, SHE

_ and (5.103) and then eliminating £+ and E~ in these equations

d; (c) the transfer
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; ! o -
where E™ and £ are the amplitudes of the resultant forward and backward propagating

waves inside the film and

_ np7C086h
Poy=—"—" (5.104)

co
wl:lere 6 is the angle formed between wavevector direction and z. Again, if n is compl
ﬂns ar}gk: s also complex, and can be calculated according to the Snell ,law 2In the ag: =
equations, we have dropped the terms exp(—iwt) and exp(—k,x) because 2;11 ti v
these factors and eventually cancel. . ke
We want to relate the electric and magnetic fields at any location z inside the film t
these fields at the interface z = 0. This can be realized by first taking z = O in eq’ &) l1-1(1)2(;

Ex(2) = Ex(0) cos ¢(z) + ip2 H(0) sin ¢(z) (5.105)

Hon =t . 4
y(@) = 2~ Ex(0)sing(z) + Hy (0) cos p(2) (5.106)

where p» = [cosBz/(na/uc,)]is the s }
_ 2 urface impedance for a
equations can be written in matrix form ' R

<Ex (Z)> - ( cosg(z) ipasing(z)\ [ E, (0)
.Hy(Z) v é.sin p(z) cose(z) ) <Hy (0)) (5.107)

.Taking z = d and inverting the above matrix, we get

Ex(O)) iy ( cosgy  —ipasing) (E.(d) (Ex(d
(Hx(o) _PLZ sing,  cosgr ) (Hy(d)) =M (H;Ed;) (5.108)

where ¢ = ¢(d) and M is the second-order matrix i
5 > > in the abov i
the interference matrix. It is easy to show that |M| = 1. ®.equation. Wercdll M

Equation (5.108) relates the electric and magnetic fields inside the film at 7 = d to

: ;1;:{1; valu;es at the boundary z = 0. To find the reflectivity or transmissivity, we need to
s Zr () zflte them to the fields outside the film through the boundary conditions. For a

boun ary ree of charge' and current, eqs. (5.58) and (5.61) dictate that the electric and
magnetic fields are continuous, which means that at 7 = 0

Ex (O) = E; cos 6 + E; cos 6 = Eix + E,, (5109)

w ni k T
Hy(0) = — (E; — o
_y( ) o (Ei —E;) = - (Eix — Erx? (5.110)

%itid at z = d, only the transmitted wave exists,

=

Ex(d) =E‘ COSH, =EIX (5111)

N

y(d) g p;E”' . (5.112)
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where p; = cos; /(n1/jscp) and p3 = cos 6; / (n3/ uco)
pu is the same for all layers because most materi
visible frequency range. We can again write t

(o) - (& “2)2)

Hy©) =\ —5/\Erz/
Exd)_ (!
()= ()

We now combine eqs. (5.113), (5.114), a
at the interfaces, to get

( 11

"
PP
where m;j are th
left-hand side and multiplying out the three ma

Eix _l
Ex it

From the above matrix, we get the

(mll'l—ﬁ

, and we have assumed that
als are diamagnetic in the infrared to
he above equations in matrix form,

nd (5.108), using the continuity of E; and H.

Eix\ _ (mu m2\( 1\ g
E.x) \ma m L )=
rx 21 M2 n
e elements of the interference matrix M. Inverting
trices, we obtain

1

(mu + ;};mu) + (ma1 + %mn)m 7
t
Linyp) — (ma1 + 5;m22)P1 F

reflection and transmission coefficients through the

(5.113

(5.114) and

(5.115)

the matrix of the

(5.116)

film as
E: E (m1y + —=mi2) — (ma1 + Lmn)p1
Rn L el LA - £ (5.117)
E; Eix (mu+ —P;mw) + (ma1 + Emn)pl %
and
E E; 6 2 -
LS ix/ COS = , Cim : (5.118)
Ei . Eig/cosbi  (mu+pm) + (ma1 + 5sm22) P1 b
2 1
where ¢;m = cos 6;/cosf;. For a TE wave, the above expressions are still valid if p
and ¢, are replaced by ‘
ncosé : o8
p=— and ¢ =1 (5.119)
peo ; :
0.6

ts known,

With the reflection and transmission coefficien
d (5.76).

and transmissivity according to egs. (5.75) an
formulation is still valid by if n is replaced with

The power of the matrix method can be best appreciate
the electric and magnetic field inside the th

for that layer. Since the transverse
tic fields are continuous at each interface tha

of thin films. In this case, we can relate
layer at both interfaces by the interference matrix M;

components of the electric and magne
is free of net charge and current, the total interference

structure is
M = M1M2M3 Hu} O Mll

the complex refractive index N.

we can calculate the reflectivity
For absorbing films, the above

d when dealing with multilayers

matrix of the whole multilaye
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_ Tt raet®
1 + riaryze?ia

Hatze'??

t—

-1 +riarpaetiv

2
rh + rk + 2riars cos 20,

Thus, with such a simple substituti i i
L o ple substitution, all previous expressions for the single-layer film
.For a single layer of film, eqs. (5.117) and (5.118) can be written as

(5.121)

(5.122)

. ;:gli-z r;lzl, irnztgoand dt'u’ t223 aref the Fresnel reflection and transmission coefficients from
g medium 2 or from medium 2 to i i i
T I e medium 3. The above formula is valid
On the basis of these ex i :

n the pressions, we can calculate th ivi issivi
i e e reflectivity and transmissivity

R = [rl2 =
14 2r1ar23 c08 20 + rfyrd,
_m cos 6; [ = (1 —-r,zz)(l - r%;)
nycost; 1+ 2rjar23 cos 202 + "122"2?3
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(5.124)

. If the optical constants of any media are c
> the rltﬁilansmi.ssivity, aI.ld carry )(I)ut complex E?rﬁrt: (:;ereilt?:f I];Sie;?r.*(;zf)r tgcz:’l‘culate
%f ms r::j :S?\S,liltle function in eqs: (5.123).and (5.124) suggests that the reﬁectivitil and
ey y vary as a funcn_on of thickness, and when there is no absorption the
s periodic, as shown in figure 5.10. This periodic variation in reflectivity and

Figure 5.10 Reflectivity,
transmissivity, and
absorptivity of a thin film
as a function of the film
thickness, assuming
vacuum on both sides.

(5.123)
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transmissivity is the interference phenomenon, caused by the constructive or destructi

superposition of the reflected and the incident waves. The maximum or minimum in the
reflectivity can be found by setting dR/dg; = 0, which leads to 1 W W . . -
sin 2¢2 =0 o8- (Stop Bang ( w -
or [
4mnoLcosth o I-
_—mT g
Xo =i Y g4r ]
i = ml[) :
" 4nycosth 02 ;
Under the above condition, eq. (5.123) becomes 0 ; 4 y
1 1.5 2 2.5 x 3
9 2\ 2 WAVENUMBER=1/WAVELENGTH (ym)
- ninz —n ‘ 7
R= ("2 '23> = (2B"2) (foroddm =2+ 1) (5.128) 4 @ ®)
1—riars nina +nj i e
s+ Figure 5.11 (a) A Bragg reflector is a periodic thin-film structure. (b) Calculated reflectivity of

2 2 t '
rp np—n "3 a Bragg reflector as a funct inci i
= - o 3 : 8 eom— i ‘ DS S SR ction of the. 1nc1d.ent photon wavoelc:ngth for a reflector with refractive
— e -~ jnd -5 and a corresponding thickness of 417 A and 352 A for each layer.
= wh;rzot;}t; sibscgpts 1 ga:d 2 denote layer 1 and layer 2 respectively. Denoting a =
nidy 1 +n2d; cos 63 as the optical thickness of one period th i -
be written as (Knittl, 1976) L § e

where the first equality in the above two equations is valid for an arbitrary angle o
incidence while the second is for normal incidence only. When the film thickness is
(2€ + 1) Ao/ (4n7 cos 6,), the reflectivity R can be a maximum (n7 < r3) or a minimum
(ny < n3). Zero reflection occurs when the film has a refractive index ./n1n3 and its
thickness satisfies eq. (5.127) for odd m. Such interference phenomena are the basis

for antireflection coatings. When the film thickness is £19/(2n2 c0s 8,), the reflectiv (¢ ka = t&x (5.131)
does not depend on the second layer. : - where k(= 27/Ag) is the wavevector in vacuum. Equation (5.131) is identical to the

The reflectivity and transmissivity of multilayer thin films can be calculated usi i?pndidt?n of the electron bandgap formation discussed in chapter 3, which was obtained
the transfer matrix method. In practice, the reflectivity and transmissivity of multilayers’ by solving the Schridinger equation. We have said before that ;he ["on'nar:it:\{J fH:h
can be controlled quite accurately with various thin-film deposition techniques and ; cleclmn bandgap is due to the cancellation of the electron waves inside the ¢ ;:;1) The
the possibility of controlling spectral and directional properties is large. One specia idESCHSSIOR on the photon stop bands reinforces this picture. The similari':itgr f I:h d
example is the Bragg reflector, which is made from two alternating layers of thin different waves, including electrons, photons, and phonons, have, in the . ];,IBSc
films, figure 5.11(a). Each layer has a thickness equal to one-quarter of the light xplored extensively to develop new concepts. For example! the }wno _1:33!‘ =
wavelength inside the film. Although, at one interface, the reflectivity between ' ' ﬁ!rer.s‘ (Narayanamurti et al., 1979) and the electron miniga[;s (Esfﬂu a;-:i {? erfizrge; =
two materials may be small, the coherent superposition of the reflected fields can cre based on superlattices, benefited from the analogy of photon stop bands in i sul’—f o
a reflectivity that is close to 100%. Such Bragg reflectors are used as coatings fo  filters. In return, it was exactly on the basis of the analogy of t]ENEQ'Clilfflﬂlil“?n:: ;f;nce
mirrors that are highly reflective at a specific required wavelength, such as for las \ Siructure in naturally existing crystals for electrons and phonons that lhesmn i
and X-rays. Figure 5.11(b) gives an example of the reflectivity of a quarter-wavelengt Y fl."e‘“i‘mﬁﬂsmnal photonic crystals was proposed (Yablonovitch, 1986) ahf;loncipt o
mirror, similar to those used in special semiconductor laser structures called vertical: -¢an also argue that this concept is an extension of the thin-ﬁln‘l Bra : ﬂoug i
cavity surface-emitting lasers (Koyama et al., 1989; Walker, 1993). The reflectivit, . three dimensions. Not only are these concepts very similar to each otig .l'\ihecmrs "
in certain spectral regions can reach 100%, meaning that no electromagnetic fields i er; the mathe-

matical techniques are also often interch
: angeable. For example, one po
e el ropne exiat ieide the reflecior. Those spectral regions, calle d stoj for calculating the band structures of three-dimensional photgnic crys[:alpsuilsml-)zsipdmaCh
bands, occur when the round-trip phase difference through one period (two layers o

generalized transfer matrix method (Pendry, 1996).
equals 2¢7, that is, when the forward and backward propagating fields inside the film

cancel each other,

5.3.2 Phonons and Acoustic Waves

A cha 8 .
phonogte.r 3, we c01.151deled phOl:lOIl. waves In a periodic lattice chain and discussed
, § in superlattices. The periodicity in naturally existing crystal lattices leads to

4mnidicosty | dnmadycosby (5.130
Ao Ao
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the representation of phonons in the first Brillouin zone. The periodicity of superlattices
adds an additional restriction to the phonon wavevector and leads to the folded zone
representation and the formation of phonon minibands [figure 3.30]. Similar to the
photon stop bands, the phonon minigaps formed in the dispersion of superlattices can be
thought of as stop bands generated by multiple reflections and coherent superposition of’
the lattice waves, as for photons in periodic structures. For long-wavelength phonons,
that is, acoustic waves, one can also use the transfer matrix method as for optical waves to
calculate the transmission of lattice waves through single-layer and multilayer structures 8
(Nayfeh, 1995). The reflectivity r and transmissivity ¢ of an SH wave through a film with

thickness d can be calculated from the following matrix &

1 ; —1‘ t ..
()2

where the interference matrix is similar to that of an electromagnetic wave

cos 972 isingra/ Y2 (5.133)
i Y5 singr2 CcoS T2 L

1 1 '
Ai = (—ZT[ cosBr; Z7icos 9Ti) G134

where g7y = wd cos 62/vr2, Y2.= —Zgpcos B3, and A; is obtained by replacing th
subscript i in eq. (5.134) by . The subscript T is used to represent properties of the

transverse waves and, in this case, a transverse wave polarized perpendicular to the plane '.
of incidence. The reflection and transmission coefficients are defined as A

r=v0)/ui(®) 1 =vi(d)/vi(0) (5.135)
The matrix formulation for SH acoustic waves is clearly similar to that for optical.
waves. Multilayers can again be treated by simply replacing the interference matrix M R
with the product My M> ... Map41. The order of the matrices is the same as the sequence.
of the layers. For longitudinal waves (L) and vertically polarized transverse waves (SV
with the displacement polarized in the plane of incidence, the relationship between the
incident, reflected, and transmitted wave velocity components of isotropic media is

¥

vri(0) vri(d) ;
vLi0) | _ p-1 v (d)
vty | = B | (5.136)
v (0) 0

are the amplitudes of the displacernent velocities of the incident

where vr; and v;
and ¢ represent the:

transverse and longitudinal waves, respectively, and subscripts r
reflected and transmitted waves, as usual. Matrix B; is a 4 x 4 matrix given by

—sinfn; cos By sin fr; —cosfy;
B = cos Bty sinfy; cos O1; sinp;
i = | pkrisin20p (k21008200 ke —pakyi sin 28 (A1 + 2 cos 6Li) ki
ik cos 287y wikyisin20z; —p1kri cos207; — kL sin26L;

(5.137),

ENERGY TRANSFER BY WAVES 193

105 .,".-'.l i TSP T T =
X . "ee g, .: — . =)
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(7]
! :
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02f i ]
LONGITUDINAL PHO i
[ H 'j°"} T 17.7°;
0.04- : IR .. A N,
0 210 410" 610" @10%

; PHONON FREQUENGCY (X10 H:)m B8 o

t??ourgehi'l g_;ga?sl:(missivizi' of a transverse acoustic wave polarized in the plane of incidénce
ugh a Si/Ge-like superlatti i § g

(Chen, 1999) sup ice as a fuqcuon of frequency with an incident angle of 17.7°

In the above expressions, k; (= w/v;) is the magnitude of the wavevector of the incident
waves .(S\.’ or L, as distinguished by subscripts T and L). B, is obtained by replaci ;
subscript i with ¢, that is, from incident to transmitted waves. The interfere};lcep i
-of the layer (with index 2) in eq. (5.136) is obtained from M = By 1Nsz, when:n ;‘;‘i’s{

obtained by replacing i in eq. (5.137) by 2, and N; is given by

e'er2 0 0 0
Ny = 0 elvL2 0 0
0 0 e—ier 0 (5.138)
0 0 0 e~ivL2

t’i‘he transfer matrix is 4 x 4 because, as shown in eq. (5.136), the longitudinal and
tz\}'xlllstrse waves are coupled and the conversion between these two waves is ‘possible
at the interface. With eq. (5.136), the reflectivity and transmissivity for an incident field

~(either vr; or vg;) can be calculated.

Figure 5.12 shows an example of phonon transmissivity through a Si/Ge-like super-

latlitic‘.s (‘)bt'ained by the transfer matrix method (Chen, 1999), for a transverse wave
2 fo t:nzed'm. tl.le plane of mcit.ience at an angle of incidence of 17.7°. The stop bands
1n transmissivity (zero transmissivity) correspond to the minigaps obtained from lattice

dynamics simula_tiop (figure 3.30) (Yang and Chen, 2001). The figure also shows that
some transverse incident waves are converted into longitudinal waves.

5.3.3 Electron Waves

53 T - .
The study of electron wave propagation in layered media started with the investigation

{

on superlattices (Esaki and Tsu, 1970). The most popular approach has been based on
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solving the Schrodinger equation using the Kronig-Penney model. There are, howeve; and thus
also a few approaches based on the transfer matrix method for electron transport 3
superlattices (Tsu and Esaki, 1973; Huang and Wu, 1992). Because we have deal,
extensively with the Kronig—Penney model in chapter 3 and described the transfer ma

method above, we will not present any details on the applications of the transfer matrix

method to electron waves here.

S T . [{nysing;\? :
cosfy = /1= sin?6, = (—‘—‘) — 1 =i|cos ] (5.143)

ng

d Subsl_:ituting the above expression into eq. (5.72) and then into eq. (5.64) gives the
+ evanescent electric field for a TM wave as

2n1 cos f; (X cos 6, — Z sin 6;) nax si
) e 2% sin 6, nae
720086; + ni[cos 6, ] }E.,/lexp[ iw (r =t ):‘ exp (—z;lms&,[)
(5.144)

5.4 Evanescent Waves and Tunneling

In section 5.2, we saw that when total internal reflection occurs for each of the thre¢
types of waves, an evanescent wave exists on the other side of the interface. The fields

wavefunctions of the evanescent wave decay exponentially from the interface. The time 28
averaged net energy or particle flux carried by the evanescent wave is zero. However, if 3
a third medium is brought close to the interface before the evanescent wave dies down_
completely, the evanescent wave can refract into this third medium. If this refracted wave;
is a propagating mode in the third medium, the evanescent wave becomes “revitalized’’
and a net energy or particle flux “tunnels” through the small region between the incidqpi'
medium and the third medium. The reflection will no longer be total. In fact, one can
even reach 100% transmission under appropriate conditions. The descriptions of these
evanescent waves and the tunneling phenomena are based on the same mathematica
expressions as we have obtained in the previous section. .

= whe:e': % and 7 are is the unit vectors along the x and z coordinate directions. The above
. equation demonstrates that the evanescent field decays exponentially with a penetration
* depth

iAo

/Y —
27 ny |cos 6| ChlEs)

:_v:rhich is roughly of the same order as the wavelength inside the medium. Using
o €q. (5.144) and the corr.v:Sponding expression for the magnetic field, it is also easy to show
that t!'te z-component time-averaged Poynting vector of the evanescent electromagnetic
eld is zero, ‘ . i : ’ .
(S,) = SRe(E x HY), = & V2 :

%55 e(E x H"), = ERe(ExHy)z =0 (5.146)
that is, no net energy flows across the interface. However, if the instantaneous Poynting
vector is exammed'. it can be seen that there is instantaneous energy flow into and out
of the second medium carried by the evanescent field. The net energy flow in and out
averaged over time, howeyver, is zero.
~ The above discussion shows the similarities between evanescent electron waves and

5.4.1 Evanescent Waves

For electrah reflection at a step potential, as shown, in figure 5.1, total reflection
occurs when the electron energy E is smaller than the potential height Up. In this case,

egs. (5.54)—(5.56) lead to

2ilky|e~Malz ' electromagnetic waves. Evanescent acoustic waves can be similarl i
‘= il ¥ (5.139) " not go into the details. ) e

where

5.4.2 Tunneling

2m(Up — E) i '
gl = L .’Ihnr'lelmg of the evanescent waves may occur if a third medium is brought close to the
first interface such that the exponentially decaying evanescent wave has finite magnitude

:dt the inter.face between the second medium and the third medium. If the wave refracted
into tl.le third pledium is propagating, a net flow of particles or energy from the first to
the third medium occurs. In figure 5.13, we illustrate the tunneling of electromagnetic
and electron waves. The analysis of the tunneling process can be based on the same
fllctl}ods that are used for treating interference phenomena. For electromagnetic waves
passing through one layer of a thin film, for example, the transmissivity is given b

€q. (5.122). Substituting relations, eqs. (5.104) and (5.143), into eq. (5.122), we get :

f12t73 €Xp [—-%%lac_o;@]

Thus the penetration depth of the evanescent wave, which we define as the depth at
which the wavefunction decays to e~! of its boundary value,is ’ 7

]
8= — (5.141);

Lo]

Taking Ug—E =1eV,wegetd ~2 A, which is a very short distance.
For an electromagnetic wave incident above the critical angle, the Snell law gives

sinf; = i >1 E= p (5.147)
ny 1+ rpr3exp [—J‘_“Z.@L‘OL“&J]
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Figure 5.13 Tunneling of totally reflected waves, (a) for an electromagnetic wave and (b) for -

an electron wave. e
i

3
where we have used 6, rather than 6; to denote that the angle is for the wave inside the g
second medium, not medium 3. The transmissivity due to tunneling for a TM wave is

e Re(nscoséy) ]”2 ' : (5.148)"
nycosd

If the refractive index ns is larger than nj, there are certain incident angles of 6; that
allow a real solution for 6;, while 8, is an imaginary angle. From the Snell law, this .
occurs when the incident angle falls in the range k.

Pl n o n
sin™! - < 6 <sin ! —3.
ny ny

When tunneling happens, it goes without saying that the reflectivity is no longer 100%
as for the case of total reflection. If the medium through which the wave tunnels is
nonabsorbing, energy or particle conservation gives R =1 — 7. i
For electrons, we can solve the Schrédinger equation for a barrier structure as shown .
in figure 5.13. The solution follows closely the method we used in section 3.2.1, which .
also resembles the derivation of the transfer matrix method for electromagnetic waves. -
The tunneling transmissivity through a potential barrier of height Up and width d is,

(Cohen-Tannoudji et al., 1997)

(5.149)

A4E(Up — E) :

T = TR (5150)

4E(Up — E)+ Ug sinh*[/2m(Up — E)d /h] :

When the argument of the hyperbolic sine function is large, the above expression car'x_i'
be approximated as

= 6 —
on KU B) opp o o O = B = =Bk s151)
. : ’ :

The same tunneling phenomenon can also occur for phonons. Figure 5.14 shows the -
transmissivity of an acoustic wave through a superlattice, calculated on the basis of the -
transfer matrix method as a function of frequency and angle of incidence (Chen, 1999). ;
At a low angle of incidence, the transmission behaves as normal and has several stop.

ENERGY TRANSFER BY WAVES 197
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Figure 5.14 Phonon transmissivity through a Si/Ge-like superlattice, each layer 5 A thick,

! showing the stop bands, the total reflection region, and the tunneling region (Chen, 1999).

bands. At a large angle of incidence, for which total reflection occurs, the transmissivity
across the superlattice is not zero but decreases exponentially as the frequency increases
due to tunneling of acoustic waves. ’

Tunneling phenomena are the basis of several inventions that led to Nobel prizes
including the tunneling diode by Esaki (1958) and the scanning tunneling e!ectron’
microscope (STM) (Binnig and Rhorer, 1982). The principle of an STM is shown in
ﬁgure‘ 5.15(a). A sharp tip is brought into close proximity with a conducting surface
but without contacting the surface. Under an applied voltage, electrons tunnel through
the vacuum gap and create a current in the loop. The current is extremely sensitive

to the separation (sub-angstrom) between the tip and the surface, as one can easily

TIP

VOLTAGE

Figure 5.15 (a) The scanning tunneling microscope is based on the sub-angstrom level sensitivity
of rhe: tunneling current between a conducting tip to a conducting sample as a feedback to control
the plez_oelecuic translation stage, which is also capable of sub-angstrom motion precision, to
fly the tip over the sample and to obtain information on the topographical and electron structure

- of the sample surface. (b) STM image of two single-walled carbon nanotubes (Odom et al,, 1998;
;> courtesy of Nature Publishing Group).
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see from eq. (5.151) since k3 is of the order of ~1 A“’.‘ As the 'tip is scanped over §
the sample, different regions have different potential barriers of dtﬂe'rent heights. By :.
using the current as a feedback signal to control the tip-sample separation, one can map -
the electronic wavefunction surrounding individual atoms or the surface roughness.
Figure 5.15(b) shows the STM images of two single-walled carbon nanot:ubes (OdQQ g
et al., 1998). : ‘ _ 3

Since the invention of the STM, a host of other types of microscope have b&?en 3
invented, including the atomic force microscope (Binnig et al., 1986), photon scanning 3

tunneling microscope (Reddick et al., 1989), scanning th‘erma.l-microsc_oge (Majumdar E
et al., 1995), and others. The photon scanning tunneling microscope 1s aIS(.) based
on the evanescent electromagnetic wave hovering above a surface..The aFormc force
microscope, however, is based on an even simpler principle: the effective spring cor'lstant
between atoms can be quite large—much larger, for example, than that ofa Sl‘ cantll.ev-er‘ 3
3 pm (thickness).x 100 pm (length) x 10 pm (width). When spc_:h a cantilever is in' &
contact with a sample via a sharp tip, the atoms of the sample will not be scratch.ed E
off. Rather, the cantilever will be displaced. Angstrom-level displacement can be easllly 3

measured with either the STM (Binnig et al., 1986) or through laser deflection, making P

it possible to use such a device to measure the angstrom-level topf)graphy of surfaces,
particularly for dielectric surfaces that cannot be characterized with an STM because

the sample is nonconducting.

5.5 Energy Transfer in Nanostructures: Landauer Formalism

Knowing the transmissivity from one point to another in a system, one can easil estimate
various fluxes associated with the carriers (charge, momentum, energy, etc.). Consider
for example, the heat transfer between twa TESEervoirs a_t temperatures 71 and 15, as
shown in figure 5.16. The heat flux from ;eservoir lto21s

kmax N kmux kmax

m-»é =5 Vilk Z > > vaEwaf(E, T)

P x1=—Kmax kylﬁ~kmax kzl=(_) .

where E is the energy of one carrier and 7j2 is the transmissivity frc:rn point 1 to point
2 for the carrier with energy E, v,i is the velocity of the carrier, the index p represents

summation over all the polarizations of the carriers, and the wavevec:.tor summal.ion
indices are over all values of k, and ky and positive values of k. Equation (5.152)isa
recasting of eq. (5.86) and is valid for electrons and photons as well as phonons, We can

similarly write the reverse heat flux from point 2 to point 1. The difference between these

heat fluxes gives the net heat flux between point 1 and point 2, similar to eg. (5.88). The

Figure 5.16 The Landauer: R e o Reservoir

formulation of the net (energy, charge, T o1 «—=

- P
particle) flux between two points 1s /———\

based on the carrier transmissivity
between the two points.

(5.152) &
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principle of detailed balance can once again be ap;ﬂied to obtain a relationship between
the transmissivity from point 1 to point 2 and the reverse direction, as -expressed in

eq. (5.89). With such an approach, and when the difference between 7; and 75 is not

large, the heat flux between point 1 and point 2 can be expressed as

r arT
P 9o - i

=KAT . e

a=T-™3 f [ f weosoE XD g, ﬂ)Dl(E)dEM;r} agQ

11 OLg L

i

oot (5153)

where K is the thermal conductance with units of Wm~—'K=!, Q is the solid angle
defined in figure 3.27, and T is the average temperature. One can write down similar
expressions for the current density and particle flux. These types of expressions for flux
are called the Landauer formalism, which views the transport as a transmission process
(Imry and Landauer, 1999).

The key for applying the Landauer formalism is the calculation of the transmissivity.
When scattering exists, the calculation of the transmissivity is more difficult and the

Landauer formalism is less useful. When no internal scattering exists, which is also o

called ballistic transport, the transmissivity can be calculated relatively easily, as we
have done for a single interface and multilayers, and the Landauer formalism is very
convenient to use.

The effects of interference and tunneling in thin films, and more generally in nano-
structures, on the transport processes can be studied from the Landauer formalism, using
appropriately calculated transmissivity between two points. As an example, we consider

|radiative heat fransfer between two parallel plates, paying special attention to the case
when the spacing between the plates is small, Quite a few studies have been devoted
to radiative heat transfer across small gaps. In a series of studies, Tien and co-workers
(Cravolho et al., 1967; Domoto et al., 1970) investigated the effects of tunneling and
interference on radiative heat transfer between small vacuum gaps, which are used in low-
temperature thermal insulation materials (Tien and Cunnington, 1973). More extensive
experiments were performed by Hargreaves (1969). The approach championed by Tien
and co-workers was equivalent to the Landauer formalism. Polder and van Hove (1971)
established a direct approach that considered the emission processes based on Rytov's
electromagnetic field fluctuation theory (Rytov et al., 1987; Narayanaswamy and Chen,
2004). Pendry (1999) provided a slightly different point of view on radiative heat transfer
in small gaps, based on the Landauer formalism. Figures 5.17(a) and (b) show the

"modeling and experimental data for radiative heat transfer between small gaps. Due to

tunneling, the radiation flux increases as the vacuum gap decreases and a radiative heat
flux much higher than that between two blackbodies can be realized, as shown in figure
5.17(c). Some recent applications of the tunneling phenomena include the scanning
tunneling microscope (Xu et al., 1994) and thermophotovoltaics (DiMatteo et al., 2001;
Whale and Cravatho, 2002). When the two objects are identical, the maximum radiation_
heat transfer can be increased by n® times the blackbody radiation heat transfer between
two surfaces through tunneling of the internally reflected wave. The n? limit is the
blackbody emissive power inside an object, which can be derived following similar
steps as we arrived at eq. (4.83). In addition to the tunneling of evanescent waves,
the tunneling of surface waves that decay exponentially on both sides of the interface

——
3 —
—
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'(a) (b) Figure 5.18 Thermal conductance of superlattice from transfer matrix calculation (Chen, 1999).
10710 I |
in the medium. The resonant modes of electromagnetic waves with optical phonons are
alled phonon-polaritons and those modes with electrons are called plasmons. Surface
phonon-polaritons and surface plasmons have high energy density near the surface but
=y  decay rapidly away from the surface. Radiative heat flux through the tunneling of surface
2 - waves can significantly exceed the n? limit of evanescent waves.
Nﬁ ., The same interference and tunneling phenomena also affect the radiative properties
=  of thin films gro . The_emissivit; i with
2 o film thickness (Wong et al., 1995; Chen, 1996; Zhang et al., 2003). This affects,
;2 10 for example, the temperature of semiconductor wafers during thin film growth. The
uncertainty in temperature measurement caused by the emissivity change is a significant
~factor in the design of semiconductor equipment used for rapid thermal processing
(Nulman, 1989).
1 ’:)?100 1108 210" 31 o't 4 For phonons in thin films, interferentg and tunneling phenomena may also affect
! -heat conduction in extremely thin films such as superlattices with very short spatial
‘”{ﬁ;:)s ) periods. Chen (1999) evaluated thermal conductance in the limit of no scattering of thin

Figure 5.17 Size effects on radiatio

perature (Domoto et al., 19
courtesy of Elsevier). (c) Ra
between a plate at 300 K and ano
exchange between two blackbodies.

can also occur (Mulet et al., 2002; Narayanaswamy eznd Che

70; courtesy of AS ) at o =
diative heat flux as a function ot frequenc
a ther at 0 K, demonstrating that the heat flux can exceed I.ht?

& films and superlattices, as shown in figure 5.18. Generally, when the film thickness is
less than a few monolayers, tunneling can increase the conductance. Lattice dynamics
‘simulations lead to similar conclusions (Tamura et al., 1999; Simkin and Mahan, 2000;
+ Yang and Chen, 2001, 2003). So far, there have been some experimental data that
suggest this phenomenon, but they are not very conclusive (Capinski et al., 1999;
: Venkatasubramanian, 2000).

n heat transfer between twa parallel plates (a) at low Lem.-‘
ME), (b) at room temperature (Hargreaves, 1969;
: adiation heat transfer

n, 2003). The face

Example 5.2 Universal quantum thermal conductance
«wo sides of the interface are equal

“waves exist when the dielectric constants of L€
‘waves exist

in magnitude but are

vacuum, the other side sh
can occur when the electrons or

e her. 1987) f one side of the interface is 3 Develop a model for the thermal conductance of a square nanowire between two
of opposite signs (Raet ez’ % )- " close to unit, which thermal reservoirs, neglecting the internal scattering and assuming the phonon
o i mnagnetic waves transmissivity for each allowable mode is one.
honons are -
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Figure E.5.2 Nanowire
connecting two thermal
TESETVOirs.

Tl T,

Solution: Consider a square nanowire as shown infigure E.5.2. Inthe cross-sectional
direction, standing waves must be formed so that the allowable wavevectors in the

x and y directions are

kx =2nﬂ = ir_’n-’k}' = E(msn=i11:h27')
. 2a a a '

We assume that the linear dispersion relation as used in the Debye model is still; *

valid. The allowable modes inside the nanowire are :

w=ck= c\/@z)z + (1})2 +k§

non transmissivity of one (which requires that'
the materials of the reservoirs and the nanowire are the same, and also a tapered |
joint between the wire and the reservoir, similar to that drawn in figure 5.16), 4
we can use the Landauer formalism to express the heat transfer through the -

nanowire as

1 . Vi
412 = q1>2 = @21 = 5= Z f vho [ f (@, T — f(w, T2)ldk, (ES-Q-Z)‘-
2 m,n

for each polarization. With a pho

from the conversion of the summation over the!
) into an integration over k,, because .
is 27/L, where L is the length of
modes in the x and y direc-

where the factor (1/2m) arises
quantum state determined by k, in eq. (5.152
the separation between two consecutive k;
the wire. We also used direct summation for the _
tions because the separations between two consecutive wavevectors in theser.

directions are large when a is small. We will see in the next section that the
phonon velocity v, used for energy transport calculations should be the group:

velocity

;
“temperal
1 . i

th::;i aZI. ::e hdave dlscfussed this point carefully in connection with the treatment of th
g ol & ;an ary resistance as represented by figures 5.7(a)—(c). Whether one sh lg
q. (5.153) or the local equivalent equilibrium temperature (or chemical potenct)l};l)
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If we further assume that T - i
1— T is small, the th E
eq. (E5.2.2), can be expressed as e thermal conductance of the nanowire,

3 Omax
K=_22 _ _3_ daf - -
n-n 2 ; hwﬁd‘”

" Omn

(E5.2.5)

where the factor of 3 represents the thr .
h i M -
phonon frequency, and ee phonon polarizations, @max is the maximum

o = (Y + (2]
a a
For the first few quantized modes ( ‘
m, n are small, i
temperature, eq. (E5.2.5) can be simplified to T o g

(B5.2.6)

3K§T Z ]'o x2
| —————dx
h A /s Xmn (ex‘—l)?

where Xy = Awyn /kpT. Whenm a

BT nd n are small, such that the lower limi
extended to zero, the integral value is 72/3. In this limit, the th a?r W
e ‘ | T, ermal conductance .

K= )
0 (E5.2.7)

252
wkyT

K=
3h

(E5.2.8)

Comment. This thermal conducta i
. the nce expression does not depend on th i
gjrsoopﬁ::; ir:i Oﬂ;us! is ttrh(;’-: sa:ge for all materials. Such universal conductanc: b]:::;i?:'
electrons. Quantum size effects on thermal cond
! uct
observed experimentally (Angelescu et al., 1998; Schwab et al. 280?:;;0@ e bees

In closing this section, we would like i

h ? t !
as expressed in egs. gl e S R
distrib ing

(5.152) and (5.153), is based on the assumption that the carrier

1 he equili

., he loca ," 7 ,k.. t 1 - nt
int 2 with a characteristic

ally.do not represent the local temperatures at points

.So

depe i

cxge ;(2;1{18 how gxpen_mems are conducted or how models are laid out. So far, most

; Lo mezr: c:ine in electron systems with the electrochemical potentials ,of the
e ured, :(md thus the I_iandauer formulation is directly applicable. If one

it b spc;r; 11:ts11de the reservoirs concurrently with the ballistic transport t;etween

: it 2, the consistency of the itions i i

e e y definitions in each region must be considered

v, = do/dk; (E5.2.3)_

Thus, eq. (E5.2.2) can be converted into integration over frequency,

g =5 MZ) f holf @ T) - f@ T)ldo

!

(B5.2.4) 3
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5.6 Transition to Particle Description '

) —» —00 t — 0
Our discussion in this chapter so far has centered on the wave nature of the energy CarTiers b /\/\/\/\/
by considering their phase. From quantum mechanics, we know that energy carriers hav

Amplitude

both wave and particle characteristics. When the energy carriers are treated as waves, 3
their particle characteristics are included, for example, by considering the energy of on:

phonon as hv. In macroscale, we often ignore the phase and treat the energy carriers as
particles, either quantum particles such as photons or phonons, or simply as classical
particles with no energy quantization. The question is then; when must we consider th
energy carriers as waves, and when can we ignore the phase information and treat them
simply as pure particles, either quantized particles or classical particles? We will attemp!

to answer these questions in this section. 2

2n
11
AVAVAVAVAVIRRS |
w,  Frequency

(@) ®) . o

fl%::tri I_:>11f9 1(a) A finite-time .peri.od s.ign'al generated between time period (0, fp) contains a
sp rum of plane waves extending infinitely in time (b), with a power spectrum shown in (c). Th
propagation of these plane waves evolves into a wave packet. =y

5.6.1 Wave Packets and Group Velocity e
: ' : uency wg + Aw/2, pro i s o :

In our previous discussion on energy propagation, such as eq. (5.152), we did not: superposition of theie niol::fi;ng.jlegﬁ th? positive x-direction [Figure 5.20(a)]. The
give much consideration to the meaning of the velocity. This velocity should repre- &t e electric field as
sent the speed and direction of energy propagation and is usually the group velocity

To understand the group velocity, we first consider a plane wave traveling along the

x-direction
Ag—i(@t—kx) +a cos [(wo + — ' t— kg — _A_k
) ) ) 55
Its phase velocity is [eq. (2.4)] = 2a cos(Awt — Akx) cos(wot — kox) (5.156)
Vpx = i’f_ = o (5.155 i '-’;.“he above electric field is shown scheméticall in figure 5 ;

- dt k {75 two waves: one is the carrier wave at central myu‘mqg: UI; me m.JZ{)(:;b). .T%‘iw—“.‘“-l’-e

Is this velocity the speed of signal or energy propagation? Generally, the answer is n the carrier wave by a wave at frequency. Acw. If the frequency chri;smui}l:l;‘;;lﬂauotg:j
er

We see that the plane wave represented by eq. (5.154) extends from minus infinity to wp, we can calculate the Poynting vector time- :
plus infinity in both time and space. It has no start ot finish, and does not represent an byt O e O Ay e T ey g
meaningful signal. In practice, a signal has a starting point and an ending point in time.'i
Let’s suppose that a harmonic signal at frequency @y is generated during a time period
[0, 0], as shown in figure 5.19(a). Such a finite-time harmonic signal can be decompos
through a Fourier series into the summation of true plane waves with time extending
from minus infinity to plus infinity, as shown in figure 5.19(b). The frequencies of the
plane waves are centered around wo and their amplitudes decay as the frequency mov
away from ay, as illustrated in figure 5.19(c). One can better understand these pictures,
by actually carrying out the Fourier expansion. Because each of the plane waves in such
a series expansion is at a frequency slightly different from the central frequency g
it also has a corresponding wavevector that is different from kg, as determined by the
dispersion relation between @ and k. The subsequent propagation of the signal can be
obtained from tracing the spatial evolution of all these Fourier components as a functio
of time. :
For simplicity, let’s consider that the signal is an electromagnetic wave with the
electric field points to y-direction. We pick only two Fourier components of equal
amplitude and consider their superposition, one at frequency @o — Aw/2 and another af

o A0

o,-Aw/2
@

©

ur ' ' itj
ig m:n 55% Example of the superposition of two plane waves (a) into wave packets (b). If there
y different frequency components, the superposition leads to a narrow wave packet (c)
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1/ Aw but much longer than 1/wg according to eq. (5.37), to obtain the average energy .; w30
flux as 3 % ! T T y
Aq?r ) 3 i g 25 /,
s n : : = L
S, 1) = 27 cos(t Aw — xAK) (5.157) 4 5% 7 |
[« ) . e /
v | ] 2.0 ¢
which is another wave propagating at the speed 3 g P =,’ 1
g w /
Aw b =} 7
\Ug,x T (5.158) .’.;_ E 15 | ; |
g - \ !
This means that.M % 40 s i
velocity. This v, is called the group velocity. In the more general case of the existence % \‘ ! |
of a spectrum of frequencies, the superpo sition.of waves. leads.to.a-narro ave packe g s / \ 1 Afmmal.ous
i 3 Boas | MeTSoS Dispersion
as sketched in figure 5.20(c). The group velocity can be calculated from 2 i v i
< 7
dw, Odw,. Do ‘ 2 ! n
‘ Vg = ka&= Ezikx ke + ok (5.159) ool . , . !
* Yoo z : n 0.1 0.2 0.3 0.4 0.5
WAVELENGTH (1:m)

The above derivation is by no means rigorous, but the concept of wave packets and
group velocity is generally applicable to all waves. In the following, we will discuss
two points related to the group velocity. One is whether the group velocity is always the
velocity of energy flow. The other is the difference between the momentum of a wave
packet and the crystal momentum.

The group velocity is usually considered to be the velocity of energy propagation of
all carriers. We have shown this point in the above example for electromagnetic waves.
The recognition of the significance of the group velocity actually started with the study 2
of sound by Rayleigh (1945). It should also be pointed out, however, that the group

velocity does not always represent the en ity. We can appreciate this from the 3
step between egs. (5.156) and (5.157), where we assumed that Aw is much smaller than /3
wy. In the case of a very large variation in the dispersion relation, the group velocity no
longer represents the energy velocity. In figure 5.21, we show the real and the imaginary :
parts of the refractive index of silver. There is a region, called anomalous dispersion, &
in which the refractive index changes rapidly with wavelength. In this region, the real §

part of the refractive index is less than 1 and the phase velocity is larger than the speed
of light. The group velocity is also larger than the speed of light. This does not mean
a violation of the principle of relativity, however, which says that the maximum speed S5t
cannot be larger than the speed of light in free space. In this region, if we have a signal :
starting at ¢ = 0 as shown in figure 5.19(a), one cannot superimpose all spectra of th
light and still obtain a nice wave packet as sketched in figure 5.20(c). For such situations
the superimposed wave is more extended in space and the velocity of the majority of -
the energy propagation, called the signal velocity (Brillouin, 1960), is still less than the 38
1

speed of light. A detailed discussion of this anomalous region is given by Bohren and 3

Figure 5.21 Refractive index of si

igure ilver as a function of wa i ;

gl Refr : t wavelength, showing th

Ufsl;i);ul;s;o]r‘l;eg%on in Whlﬁ!‘l both the phase velocity and the group velocity are Iargir ﬂ:a anﬂ(l)malous
- The signal velocity; however, is still smaller than the speed of light i

and thus the phase and group velocity are, respectively,

g E/m_ Bk 9E/M) _ kK

-C_ k 2m €T 8k ';;' ~(5.161)
: cll::ri?;l thel group velocity is consistent with the de Broglie relation p = kk and o

i inre at10111 P = mvg, but not the phase velocity. When we deal with électr:;

ey CrJéSta 5, I}OWCVGL mY, does not normally equal Ak, where k are the electron

momcmu(r)rl;sane;emm_ltetd from the von Karman boundary condition. We call Ak the crystal

use it to satisfy the m i -
e 1 T y omentum conservation rules and to calculate the

d(hk)
dt

The re i i ] iodi

electmiior\l;}(l);ndxng 80 is that the panf;dlc potential also exerts another force on the
electfons.a_re - (:) f:rystal momentum is used, one can carry out the calculations as if
) b IE-) subject to the 1.ntcrnal field of the crystal (Aschroft and Mermin, 1976:
i déﬁne’d - ; (osr lsgr;h calculations, however, one still should use the group vek::city as
; i mom:f;-nu;;lf ) as the actual speed of motion of the electrons, while using the
% or the cxt.ernal force and the momentum conservati les. Simi

. arguments hold for phonons inside crystals. Fhe ey

Fext =

(5.162)

Huffman (1983). :
The group velocity of electrons is the velocity at which the electron wave packet

moves in free space and inside a crystal. The energy dispersion of a free electron is 5.6
.6.2 Coherence and Transition to Particle Description

i‘ ilﬁ‘ll Should we COI]SldeI (e phase Of the wave a]ld when not? Ihe answer to t]lls
Lb
S h S
+ qUCSUOIl 18 flllldanlental fOI the ttaIlSPOIt Of all these carrers and has beell Studled n

2
£ 00 A
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different disciplines. If the phase of the carriers must be considered, transport is coherent
and the wave approaches illustrated in this chapter should be followed. In the other limit,
the transport is incoherent. Transport in the incoherent regime will be treated 1n the
following two chapters. In between the two limits is the partially coherent regime. Most
engineering approaches for transport, built on diffusion equations, ignore the phase and.
treat carriers as incoherent particles. What are the conditions for these approaches to
be valid? : 1 '
Answers to these questions are by no means straightforward and vary with the types
of carrier. For photons, the scattering is less frequent and mostly elastic; consequentl
the discussion of coherence has been based more or less on the spectral purity (Born
and Wolf, 1980). For electrons, inelastic scattering is strong and thus the discussion of
coherence is closely related to scattering. There is less research on phonon coherence.
Consequently, we will first discuss photon coherence and then electron coherencc.‘.,l

followed by some discussion on phonons.

5.6.2.1 Coherence of Electromagnetic Waves

From eq. (5.156), we infer that the spatial spread of the wave packets in figure 5.20is
Ax Ak ~ 27, or, denoting Ax as £,
e s — (5.163)

oo
Av

For electromagnetic wave propagation, this length is called the coherence length (Born
and Wolf, 1980), which is inversely proportional to the effective bandwidth of the waves
in the system. A 0 etic contains a seriés of wave packets fired

individual emi i shown in figure 5.22(a). Each wave packet has

a coherence length given by eq. ( 5 163), However, no phase relations exist between the

wave packets,
Rgﬁ:i
1
- S N

® ® © @

Figure 5.22 Traveling and interference of wave packets. (a) In a big domain, individual W
packets are uncorrelated and can be thought of as point particles. (b) At an interface, the tail o
the wave packet and the reflected wave packet have a fixed relationship and thus can interfere

with each other. (c) Inside a thick film, two wave packets can have transient interference but,

since they do not have a fixed phase relationship, such transient interference can be anywhere
inside the film. The end results are that no interference beats can be observed and thus geometrical
optics should be used rather than wave optics. (d) In a periodic structure, however, the sam
wave packets are split many times at each interface and it is possible that the wave packets in
a layer that are returned from other interfaces can overlap with the other wave packets insid

the layer.

“calcy
calledTay tracing is based on tracing the trajectory of photons and their intensity, rather
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For blackbody thermal radiation,. i
r black the energy uncertainty of the individual radiation

g;njm (atorr}s, electrons, (?r mol_ecules) is of the order of kg T, due to the collision of
eﬂ;:j z:;;t:le:: :ﬂ‘.}l: ﬁe-r;sﬁwo; which also means that the effective bandwidth for thermal
B . Using this effective bandwidth and eq. (5.163), on i
: 65, , One c:
that the coherence length is of the order of he/(kpT). A more det;iled cali:!:ﬂ:st?or:am ct;‘

the coherence length 1 (Mehta, 1963)
gczo'_ls_’l’_"_ -{’L’\e(‘n’x‘-i
T\ ety (5.164)
S e f's

This equation can be rewritten as

PCT =2167.8 mkf (5.165)
For reasons to be explained later, eq. (5.164) wiil also be called thermal length, reflecting

the origin of this coherence length Compared with Wien’s disp nt law, the coher:
: . 1 en
ence length of a blackbody mdmmmemmm' x
to the peak radiation intensity. ' o R
The coherence length, faken as a measu i
| re of the wave packet size, gives an indication
of whether the phase information needs to be considered for transport p es or
not. If the size of the transport domain is mu oer_than the : T
coherence length, then the wave packe tre: t
n i figure 5.22(a). When a wave packet meet rfect

interface, however, it will be reflected and refracted he ref]
fixed phase relationship with the incoming one thus interfere with the incomin

::;v;ai gacl?th[ﬁidm 5.22(b)]. This is why we always use the Fresnel formula—the wave
ution of the Maxwell equations—to calculate the reflectivi i y
' equ: clivity and transmissivity of
perfect interface. If multiple interfaces exist, as in a fil e
<domain can encounter another incomi i b s e At
ming wave packet [figure 5.22(c)]. Alth th
two wave packets can create a transient interferen : : oo
twow hen they overlap, thei i
locations are not fixed because no fixed ationshi e
: phase relationship exists between th
packets coming from a random thermal source. B it s
con ! . Because the number of random
packets inside a ray is large, on average, we can ignore the phase relationship i:;?;:

the domain and treat the wave i port in this regim
i packets as particles. Transpo this regime is called

Consider now a thin film with two interfaces, If the size of a wave packet is small

L 2 3
« ﬁpnf;? m:;) the film thlckncss.l transport 1s incoherent. In this regime, we can neglect
t nce phen?menon discussed in section 5.3 and use energy superposition to

The energy superposition, also

than the electromagnetic fields, thus ¢ i

_ : i ng the phase infé i

glet:;ll‘onlfgneL{c fields. .Tht;s next two chapters will discuss such particle Lr:;:;;t:;lnﬁglr:
- The horizontal line in figure 5.23 gives the transmissivity of a non-absorbing thin

- film calculated on the basis of th perposi ey
= e cnergy SU 0§ u - s
the film thickness. In the other limit, ‘when rposition method, which is independent of

= thic
kness, the same wave packet can overlap after experiencing multiple reflections: that

ve packet is large compared to the film

15, the tail of one wave packet is still entering the Alm while the head has gone through

. multi i i i
multiple reflections. In such a case, consideration of the phase of the waves becomes
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R 5, and £ is the thermal wavelength given by eq. (5.165) (Hu
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THICKNESS PARAMETER (4mn,L/A)
ssivity of a film subjected to polychromatic incident light as a function of
¢ approach, particle approach,’
and partial coherence theory. In the thin film limit, results from the partial coherence theory agree.
with wave approach. In the thick film limit, the theory agrees with the particle picture (Chen and

it i

Figure 5.23 Transmi
the film thickness parameter calculated from different methods: wavi

when th is thi s =

in ;I; ertillanlll - thl;k’ the Pal'tlcle p}cture should be used. For film thickness in betwe

1 E Y conerent regime, either the spectral averaging method or a Lrea‘gr?ent,
en

Tien, 1992).
based o'n’ partial coherence theory should be adopted
n e can e the interference phenomenon discussed in section 5.3 ; The situation i licated if there are mc.;re interf: C
s aces. Consider iodi
such as a Bragg reflector, as shown in figure 5.22(d). A wav: rpaafl:el::[):z:;

and shown in figure 5.23. If the number of overlapping reflections inside the film for the
same wave packet is large enough, the solution obtained in section 5.3, which includes *

an infinite number of reflections for a single frequency (also called monochromatic), can
be a good approximation, as shown in figure 5.23. In the intermediate case, when the

wave packet is comparable to the film thickness, the same wave packet may overlap oni)i_

partially inside the film or only within a few reflection cycles, and the transport falls int

the partially coherent regime. In this regime, one can use the partial coherence theory '

for electromagnetic waves (Born and Wolf, 1980; Chen and Tien, 1992) to calculate the:
be decomposed

reflectivity and transmissivity. On the other hand, since a wave packetcan ]
into the superposition of monochromatic waves, it is also permissible to calculate the 3§

d transmussivity first for each frequency, using the wave formulation, and

waﬁn;::;e?:ﬁpll}z r:]ﬂe:etéons in multiple layers and the coherence property of the
s tered. In a single-layer-thick film, for example, the multiple
however, wave packet‘: Z:iﬁikeditﬁq;:: ?;;\:ﬂﬁp :im Forr et Stfﬂcmf;e.
s : aces have a chance of ove, ing
-'avem,g ?:gs:;;zgzi ti11-1v.!“1gm-aa 5.22(d?. ';'h‘us, in the case of Bragg reﬂectorsdiil;ns];ezzr;l;
: pege- i mul}g E;nd transmissivity based on wave optics and based :;n ray tracin
o Sk hor a blackbody 1_-adiation source even with a period l:hiclcnesf
< ey Ofmmﬁsswcio e;ence length given by eq. (5.164). Figure 5.24(a) shows an
g fmqu? ofa Bragg re‘ﬂector forincident blackbody radiation at 1000

ncies and incident angles. The transmissivit calculat; aﬁ

reflectivity an:
then to superimpose the results for all the frequencies to obtain the final results, the wave method using the .
o i 15 e Od_ approaches a constant as the number
_h_hredide g5 B _ i R@I@As o much lnger than th blackbody coherence ey, Howey {fo flms it perods
N A (O Ji o Jile)de . -gai:‘nl‘:" continuously decrease with increasing num‘ber of p::i,odse gsuﬁs ety
e Z - UJne
where J: is the incident photon Poynting vector and Aw is the spectral width of the 'boteﬁtiaziﬁl:ﬁigdi? ihe Kromg—Penney model for electron waves in(;?é:eu: (;Ziﬁ:
incident photon. Figure 5.23 shows results obtained from the above spectral averaging: ‘except in the ban Ao :e:z;uﬁééhr: EI:C;TOH Wwaves can extend over the whole structure
j clectrons exist at all. For these extended )
waves,

(marked as exact) and from a partial coherence formulation (marked as approximate),
(Chen and Tien, 1992). The two approaches lead to the same results, which shows l.hz_ltl

: hand, if the phase of t icd :
when the film is thin, the single frequency formulation 1s approximately correct, and P he waves isignored, asin ray tracing, photons experience sequential

'3
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with increasing number of periods, as shown in figure 5.24(a). In another demonstration, : 09

it has been shown that the blackbody radiation passing throu, h two pinholes is partially-’ : . ; .

coherent even for a pinhole separation as large as a few centimeters, much longer than -{E?. S 0.8F j

t c radiation source (Mandel and Wolf, 1995; James & Perlodic structure 0.01c 1

and Wolf, 1991; Santarsiero and Gori, 1992). j 0.7} ()-=‘1J-é4 ::
2.01lc

g
)

The above discussion throws us into trouble. The coherence length is not a proper.
measure_for neglecting the phase information of waves, as shown in the case O
Bragg reflectors. In practice, however, the modeling of radiation transport through
thick multilayers, such as windows, is often done with the ray tracing method. How
we can justify the use of the particle picture? There are three possible justifications: |

(1) surface_roughness: (2) nonparallel surfaces; and (3) thickness variations. All

e
0

kY

Hemispherical
spectral transmlttance
Qo

ﬂ-u-q---u--

these factors create a certain randomness in the phase of the reflected and refracted = 0.3r _
waves. However, randomness in a struc ily lead to the particle ;‘ i
i y 0.2 |

picture. ]
~ As an example, we consider that the thickness of a Bragg reflector has a certain 04}
randomness. For this case, the transfer matrix method is still applicable. Lu et al. (2005)
computed the transmissivity of Bragg reflectors with different level of randomness in % i : _

8 £o 15 20

the film thickness, as shown in figure 5.24(b). With randomness in the period thickness
the transmissivity does decrease with increasing number of periods as with ray tracing:

However, the wave approach still does not agree with the ray tracing method. Depending'7
on the degree of randomness, the transmissivity from wave optics can be either larger

or smaller than the ray tracing results.
It turns out that the decreasing transmissivity in the case of random thickness -

vwmwmmzw&w—cw- When the phases
have enough randomness, the superpo ‘tion of waves.can create complete cancellation
rtain frequencies for the one-dimensional sup erlattice considered here.

of waves a c
(Sheng, 1990). Figure 5.25 shows the transmissivity as a function of wavelength. It can’
ly zero. These waves do

be seen that the transmissivity of high-frequency waves is near
not propagate through the structure because of destructive interference among the waves.

This phenomenon is called locdizaﬁon.mmmm. localization

implies that ate. If a wave is
localized, the transmissivity decreases exponentially with thickness of the structure, ' the scattering, or inelastic, i : —
Thermal radiation, however, contains waves of many frequencies, not all of which ¢ . are changed, The sca:se%iﬁf“;tiz:g;hbth? direction and the energy of the electrons
be localized. Thus the transmissivity does not exactly follow an exponential behavior. “S8gE The elastic scattering itself does not destrgylxpu?]nes and at the boundaries is elastic.
The phenomenon of localization was first studied for electron waves by Anderson (1958)_. | impurities and the surface roughness may c te phase but the random locations of the
and similar phenomena have been found for all kinds of waves, including photon and &8 : that the particle approach is appmﬂmwly v::%e;lnough randomness in the phase such
phonon waves (Sheng, 1990). The investigation of localization phenomena is still a el create ization of the electron waves }(;)n tlll.' hother cases, the randomness can also
very active area of research. It has been found that localization can easily occur in one- electron—phonon scattering, randomizes- i handﬁmﬁgm
dimensional and two-dimensional structures, and when the number of modes is small. @  the electron-phonon scattering change all the time Wmmf
However, it is much more difficult to create localization in three-dimensional structures,  destroy the phase. If one uses the wave aj ¢ time. These scattering events completely
particularly for electromagnetic waves (Garcia-Martin et al., 2000). The example of _ Phase-destroying inelastic scattering m;imﬂ::ll without proper consideration of the
Bragg refiectors with random thickness variations is a simple one-dimensional case & ~ w Thus, electron transport has us pro y ‘ e results WIH be wrong.
and thus it is relatively easy to observe the localization phenomenon, as the computed -2 - transport (Ferry and Goodnick, 1997) e - S.irom those o

) ’ jor length scales that are often used in

Wavelength (um)

"Figure 5.25 Photon transmissivit ran

= y through a random Brage reflecti i

» i i t :

Vﬁ:g:gg;y photons are raadz. ly localized (Hu et al., 2005). The fagugr curv:s ll?;;e is:creasowmig tha't s
, 8, 0, measured in terms of coherence length, as indicated by the dashed arroI:vg e

5 ._6.2.2 Coherence of Electron Waves

The coherence of electro i i i
major difference between electrons i : 'h OHDE
. diffe and photons is the i i
scattering is mostly elastic; that is, wmm
. are the same as that of the in ml' On Ly
: ! : A Uc INCOIN B PO Al l__.'l DS E elaty i
the incomin - i e 1 L
fe focom e[gecz;z: nzcmg_;;gelggd waves gx.is;.s,.The scattering of electrons can be elastic iz
! erely change direction but have the same energy before and after

transmissivity in figures 5.24(b) and 5.25 shows. Surface roughness, however, makes & describing elex ;
the wave three-dimensional. In these situations, it is likely that the phase of the waves ¢ the thermal length. The mean free path is : Rath. tne phase coherence length, and
can be ignored and the particle picture can be used, provided the coherence length is3@ successive scattering events and is A ~ v arme:i‘sure i t-he average distance between
smaller than the characteristic length of the surface randomness. 38 Fermi level, or the Fermi veT();i_t} and rzs ’t}:; ;?;ﬁww

; ’ me, that is, the average

1 L
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time between successive collisions. The approximation sign is used because the Fermi
velocity is only an approximation to the average electron velocity; this approximation |
works best in metals and in heavily doped semiconductors.* Not all the scattering events |'-"-

governing the mean free path are phase destroying. The inelastic scattering mean free S8
pathis Ay = v T,, here 7, is the inelastic relaxation time or phase-breaking time. The #8

‘phase coherence length, also called the Thouless length, is defined as A, = (azp) /%, HE
where a is the electron diffusivity, which we will discuss more in the next chapter, and 'S8E
a ~ vi1. Because the relaxation time is used in the diffusivity, A, is slightly different
from Ay, The use of diffusivity in the definition of phase coherence length implies K
that electrons may experience multiple elastic scattering, that is, diffusion, during the
phase-breaking time. Typically, we havélA < Ag < Ain

In addition to these length scales, there is also another length scale that is related to the
thermal broadening of the energy levels of electrons. As in the discussion of the coherence
length of blackbody radiation, the thermal broadening in energy is of the orderof kT,
Thus, according to the Heisenburg uncertainty principle, the corresponding uncertainty
in time is i/ (kg T). The thermal length is defined as Ay = (ah,.r‘lc,gT}—[ﬂT Comparing |
this thermal length with the photon coherence length, eq. (5.164), the thermal length here §
is defined based onthe diffusion transport, with the diffusion length given as (at.)V/?, 8
where 1, is the characteristic time. The photon coherence length given by eq. (5.164) is |
based on the ballistic transport of photons of different energy spreading over kT, with _
the transport length given by vz.. Both lengths are a measure of the thermal spreading :
in the energy (wavelength) of the energy carriers, and thus are fundamentally similar’
concepts. This is the reason that we also call the coherence length given by eq. (5.164
the thermal length.

The phase coherence length A e are usu ;
whether transport is in the wave regime or the particle regime. If A7 > Ay, the inelasti
scattering is considered as the dominant phase-destroying process. Under this condition
if the structure characteristic length, such as the diameter of a nanowire or the width
of a quantum well, is larger than A, quantum states, as predicted by simple quantum |
well and quantum wire models in chapter 2, cannot be created because of the loss of i

ation.of the electron es. The ho > treated with gp_gg[_g:jg
considered as

approach for such situations. If Ay > A7, thermal excitation is often
the domi i ism. Under this condition, if the structure characteristic 2

the dominant dephasing mechanism.

length is much larger than A, it is often thought that the particle treatment leads to the 2
same results a yproach. However, as pointed out before for photons,
the wave and the particle approaches lead to the same results for simple geometries :
only. For periodic multilayer structures such as superlattices, the particle and the wave.
treatments do not lead to the same results, as explained in figures 5.22(c) and 5.24.

(g

5.6.2.3 Coherence of Phonons

Phonon coherence from a transport point of view is the least considered one among;
electrons, photons, and phonons. The discussions on photons and electrons, however;

*For non-degenerate semiconductors, that is, semiconductors with the chemical potential lying inside 3
the bandgap, vy should be replaced by the thermal velocity v; = (3xgT/ m*)1/2, where m* is the electro
effective mass.

. than the mean free path, rough interface scatterin most likely ¢

that do not extend over the whole superlatti
Periods, can capture the same trends as experi

f erimental i
_aud Chen, 2003). Such damped waves arepc st e
into eq. (3.43) (Simkin and Mahan,
€xample, can be due to the loss of coherence resultin
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sheddSOfne ]jght. on the cqherence issues of phonons. Scattering of phonons by
boundaries and impurities is elastic and thus not phase destroying. Consequent]
these scattering centers can either lead to localization ¢ i i #
good approximation. Because the dominant phonon wavele gth is typically very short,
a _ ngth is typically very sh
10}30 A at room temperature FCl?en, 1997), interface roughness of the same order or
Jnuch 2ATZEr eXISIs. al most material interfaces or boundaries, and thus the particle-based

uea:nm‘:nt is likely to be valid for most practical situations. Phonon—phonon scattering,
which is dominant in most materials at room temperature—a topic we will discuss in the

next chapter—is inelastic. The mean free i

ic. Th path of such scattering processes can be 1
howe-ver. For example, in silicon, the estimated mean free path is 2500-3000 A (Cﬁgn,
1998; Ju and Goodson, 1999). For structures much larger than the phonon—nhunon:

scattering mean free path, the phase of phonons must be ignored. For structures smaller
1 justify the particle
treatment 'becau.se of the short phonon wavelength, as mentioned before. The particle
approach is particularly useful when the detailed interface structures are not cl d
thus exclude a full-scale wave treatment, j &
X Ct)ne candalio ;stimaztce the thermal coherence length on a basis similar to that for
photons and electrons (Chen, 1997). Using an ener: i
, gy spread of k3T, we obtain th
tp;};(ci)non tltlel'{n:ll w;velength, defined as v/Av, as ~ vk / (kgT). At room temper;turee
ng a typical value of v ~ 5000 ms~!, we get a thermal | :
ms”, y ength of 10 A. Such
thenn;i.l length, although u§eful as an indicator of width of the wave packet due to ther(inaéll
-Spl:;c : ;'f; cannot be applied to periodic structures such as superlattices (Chen, 1999).
in deciding whether wave effect can be neglected, as in the case of the apph'catidn of

. eq. (5.165) to Bragg reflectors.

. The thermal conductivity of superlattices is a good example to illustrate the coh

issues related to phonon transport. It has been exi:erimentally observed that therz? :
mal !::onductivities of superlattices are significantly reduced in comparison with eal =
obtained from the Fourier heat conduction law using the bulk properties of eachvlaues
(Yao, 1987; Chen et al., 1994; Lee et al., 1997; Capinski et al. 1999). The mechani =
of the thermal conductivity reduction, however, have been m;der deé:ate (Chen Z{fon;s
_Y;mg anq Chen, 2003) One approach is based on treating phonons as particles v;rith th.-;
phonons in each individual layer having their bulk properties but experiencing h-;cohercm

- interface scattering, The other approach is based on treating superlattices as a new crystal

suh'ucture with a unit cell spanning over one period of the superlattice, that is, treating
phonons as o?hercnt waves extending over the whole structure. The particle ;pproac;
:ns:saez that interface scattering de:slroys the phase. Particle-based model can fit experi-
i intmf::lt:e:asr[;d on ;;he assumption of how many phonons are diffusely scattered at
- Lhe coherent phonon wave approach, based i i
Saities sl > app ; 2d on a pure harmonic lattice
: t the reduction in thermal conductivity is c
tvity is caused by thi
phonon spectrum change and the associated ion i b
reduction in group veloci i
figure 3.30. The ideal l:ttice d i S o e
.30. ynamics model, however, cannot predi
of thermal conductivity reduction as i i : e
as 1s experimentally observed. R i
5 , : . Recently, it has bee
own that a lattice dynamics model based on damped lattice waves, that is,);anjce waver;

ce but can exist in one layer or over a few

reated by introducing a complex wavevector
2000). The imaginary part of the wavevector, for
g from diffuse interface scattering
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Figure 5.26 Thermal conductivity of
superlattices obtained from a lattice
dynamics model with damped lattice
waves (Yang and Chen, 2003). The -
damping is determined by the interface -
specularity parameter p, representing
the fraction of specularly scattered
phonons. In the thin period limit, the
results represent coherent transport
whereas, in the thick period limit,
the coherence is lost and the results
represent the particle transport regime.

[ Capinski et al. 1999
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(Yang and Chen, 2003). In figure 5.26, the interface specularity parameter p repre-
onons, which are assumed to be coherent.

sents the fraction of specularly scattered ph
The other phonons are diffusely scattered and are assumed to be incoherent. We first
examine the case p = 1, that is, all phonons are specularly reflected and waves extend
through the whole superlattice. In this case, the thermal conductivity is independen!
of the period thickness until the period is only 1-5 monolayers, in which regime the
cross-plane thermal conductivity actually increases with decreasing film thickness. Thi
recovery in thermal conductivity is due to phonon tunneling, as shown in figure 5.14
The fact that above about 10 A the thermal conductivity does not change with thickness
is related to thermal broadening. As we indicated earlier, the thermal length is also ‘
about 10 A. However, in this case, the particle approach would lead to different results
(Chen, 1999) and thus the wave and the particle approaches do not agree with each’;
other. When p is less than one, the phonon waves are damped in the superlattice du 5
to diffuse scattering. When the period thickness is large, the phonon waves are no
coberent over many periods and thus the spectra calculated from lattice dynamics with
imaginary wavevectors are close to those of bulk phonons. In this case, the thermal:
boundary resistances at interfaces dominate the thermal conductivity until the period
becomes much larger than the mean free path in the bulk material, for which the thermal
conductivity eventually approaches the predictions of the Fourier law (Chen, 1998).%
In the thin period limit, the superposition of coherent phonons extending over many
periods leads to new phonon band structures and, correspondingly, wave phenomena'
such as stop bands, interference, and tunneling all contribute to the thermal conductivi

behavior.

5.7 Summary of Chapter 5

This chapter discussed the wave picture of energy transport and the transition from:
the wave to the particle description. The purpose of section 5.1 was to familiarize the
readers with various forms of waves including electromagnetic waves, acoustic waves,
and material waves. The electromagnetic waves are governed by the Maxwell equations..
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AcOll.Sth waves, which are long-wavelength phonons, are described by the acoustic field
equat}ons or the Christoffel equation. Material waves are described by the Schrédinger
equation. Solutions of the wave equations lead to the fields at each point as a functiongof
time?. The energy flux associated with each wave is usually a product of various fields
as given by LFle Poynting vector for electromagnetic and acoustic waves, and the particle:
flux expression .for material waves. Although these waves are descrii)ed by different
governing equations, the key point is that all forms of waves share similar behavior, as is
clearly demonstrated in the following four sections. Although the material present,éd in
this chapter is diverse, some readers'may be familiar with one or several forms of these
waves anc? can understand other forms of waves by analogy.

At an interface, all waves experience the phenomena of reflection and refraction
A Sne}l-law type of relation governs the angles of incidence and transmission The;
reflection :and transmission coefficients, which are called Fresnel coefficients for-elec-
tromagnetic waves, can be obtained by applying the appropriate boundary conditions
fc.)r each type of wave. The expressions for these coefficients are quite similar amon
different types of waves. From the reflection and transmission coefficients, one caﬁ
calculate the reflectivity and transmissivity of energy or particle flux. Sever’al special
cases for reﬂef:tion and transmission of waves at one interface are of great impoxfance
Qne example is total reflection, which occurs when the refractive index or the acoustic;
1mpeda_nce of the medium at the incident side is lafger than that at the transmission side
for optical and acoustic waves, respectively, or the potential barrier is higher than the
energy of the incident material waves. When total reflection occurs, an evanescent wave
'ex1sts that extends into the second medium. The time-averaged er;ergy or particle flux
into the second medium carried by the evanescent wave is zero but the instantaneous
}ield and energy are not zero. Thermal boundary resistance between two perfect solids
is due to the reflection of phonons at the interface. s ‘ "
' When multiple interfaces exist, superposition of waves due to reﬂectidn at multiple
mterjfaf:es creates the familiar interference and tunneling phenomena in thin films lgor
mul.tlldlmensional problems, which we did not discuss in this chapter here, the Sl;. er-
p051t.10n of scattered waves leads to diffraction phenomena. We introduced ,the tranlzfer
ma?rlx'method for calculating the reflection and transmission coefficients of multilayers
Whl.Ch is valid for both interference and tunneling regimes. Interference gives the fam)glia.;
osFluauon of reflectivity and transmissivity of optical coatings as a function of the film
thlck‘ness, and affects the thermal radiative properties of thin films and multilayers. In
multilayer structures, particularly periodic structures, interference leads to the format'ion

- of stop-bands, which corresponds to the formation of gaps in the energy spectrum of

electrons, phonons, and photons as discussed in chapter 3. Tunneling of evanescent
waves th.at exist near the interface under appropriate conditions can occur when a third
¥ned1um is brought close to the interface, before the evanescent wave signiﬁcantly decays
in the SCCOI:ld medipm, and when the third medium allows the propagation of the wav};
t'Iu'he t;l'nnehr.lg phenomenon is the basis of several recent inventions such as scanning.
m:;uz;;gc trrﬁl:;ozgzg)lll cftc;l(‘) Iilectrons and photons. It also occurs for acoustic waves and

Given the transmissivity of heat carriers through two points of a system, we can
calculate the pet heat transfer (or other fluxes of ihterest) between the two points ,usin the
L'andauer formalism as manifested by egs. (5.88) and (5.153). The Landauer f’é)rma%ism
Views transport as a transmission process. The net flux (energy or particle) between any
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two points A and B is the difference between the corresponding flux transmitted from ‘ H

A to B and that from B to A. The principle of detailed balance can be used to write the

final flux in terms of the properties of one side (or one point) only, together with the i

transmissivity. A ]
Calculation of energy or particle transport under the wave picture is often tedious and Ja

requires mathematical manipulation of the field quantities. In section 5.6, we discussed

under what conditions we can neglect the phase information and treat energy carriers as J.

particles. First, we demonstrated that the superposition of monochromatic waves leads 1,

to wave packets that propagate at the group velocity rather than the phase velocity. This

group velocity is normally the velocity at which energy is propagating, but in a highly P

dispersive medium the group velocity is not necessarily the energy propagation velocity,

The width of these wave packets is the coherence length, which is inversely proportional 3% Kk

to the inverse effective spectrum width (or energy spread) of the carriers. If the coherence '_ &

length is long compared to the structural characteristic length, the wave picture should =

be used. In the opposite limit, however, we should be more careful. We can treat the ;38 ;

transport as particles as long as the wave packets split from the same original one, for, ,

example, through reflection at an interface, do not overlap at the same place and the same g

time. This often happens when the structural size is large compared to that of the wave & =

packets. However, in periodic structures, such as Bragg reflectors and superlattices, the % "

wave packets reflected at different layers can merge and still overlap. Consequently, the - "

particle approach and wave approach do not agree with each other. Elastic scattering,
caused by inhomogeneities such as impurities and interface roughness, does not destroy
the coherence of the waves. The random elastic scattering can potentially lead to two ZSE
effects. One is localization, for which the waves are localized and do not propagate: |
Localization is generally easier to observe in low-dimensional structures than in three-
dimensional structures. The other effect is that random scattering and the subsequent .
superposition of scattered waves usually leads to results that are close to those obtained .
from the particle treatment. When the exact locations of the scattering centers and surface
topology are not known, which is usually the case, the particle treatment leads to bette
agreement with experimental results. Inelastic scattering completely destroys the phase
When the structure characteristic length is much larger than the inelastic scattering |
mean free path, or, for electrons, the phase coherence length, the particle treatment is

mandatory.

5.8 Nomenclature for Chapter 5

a electron diffusivity, ms2 E  allowed energy level, J /el
A amplitude and direction of field E electric field, NC™! = Vm~1 3
B  magnetic induction, N s [ probability distribution
m~!C! function,
co speed of light in vacuum, F  vector wave field; force, N u
ms—! h  Planck constant, J s Uy
d film thickness, m ki Planck constant divided by vp
D  electric displacement, C m™2 2r,Js v

magnetic field,
Cmls!=Am1
imaginary number unit, /—1
flux of particles, s~! m—2
acoustic wave power flux,
W m—2

current density, C s~! m—2
surface current density,
Am™! :
magnitude of wavevector, '
m-1 v

wavevector, m™!

unit vector along wavevector
direction

integer

coherence length, m

mass, kg; integer

real part of complex
refractive index N

complex refractive index or
complex optical constant
surface impedance,

A

polarization per unit volurme,
Cm—2

magnitude of heat flux,
Wm—2

heat flux vector, W m—2
charge, C

reflection coefficient
position vector

reflectivity

Poynting vector, W m—2
strain tensor

time, s; or transmission
coefficient

temperature, K

temperature of phonons
coming toward interface, i.e.,
temperature of emitted
phonons, K
displacement, m
potential barrier height, J
Fermi velocity, ms™!
velocity, ms™!
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Ve

€ &X 8 ©

=

group velocity, ms~!
acoustic impedance,
kgm—25-1

absorption coefficient, m~!
skin depth, m

spectral width, s~
electric permittivity,
C’N!'m2=pFp-!
complex electric permittivity,
C2N~'m—2

electric permittivity of
vacuum, CZN-I ;2.
dielectric constant

angle, rad

imaginary part of complex
refractive index
Boltzmann constant, J K1
wavelength, m

Lamb constant, N m—2
mean free path, m
inelastic scattering mean free
path, m

thermal wavelength, m
phase coherence length, m
magnetic permeability, N s2
c=2 .
Lamb constant, N m—2
frequency of phonons and
photons, s~!

electric polarizibility

net charge density,

Cm™3 ;

surface charge density,
Cm? :

electrical conductivity,

Q lm1

transmissivity

azimuthal angle, rad

phase factor '
electric susceptibility
wavefunction

angular frequency,

rad. Hz .

specific thermal boundary
resistance, K m2? W—1
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Soe 1%, r reflected wave
0 vacuum s surfacc.

1,2 medium 1 or medium 2 t transmitted wave
12 from medium ! into T transverse wave
-medium 2 x,y,z Cartesian

21  from medium 2 into components
medium 1 .
amplitude Superscripts

(o complex > complex

e based on emitted phonon conjugate
temperature = second-order

i incident wave ) -

L longitudinal, or Lamb > average
constant
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5.10 Exercises

5.1 Surface emissivity. The refractive index of silicon at 0.63 wm is (3.882, 0.019).
(:‘a_iculatc the surface reflectivity, transmissivity, and emissivity of a semi-infinite
sﬂ:rion \fa.rfiferd(a) at normal incidence, (b) at 30° angle of inidence, and (c) at 60°
angle of incidence, for both TE and TM waves. Also, estimat i
depth for normal incidence. o epeena
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5.2 Inhomogeneous wave in an absorbing medium. A plane wave in vacuum i
refiected by a medium with a complex refractive index N =n + ix at an angle

of incidence 6. Derive an expression for the electric and magnetic fields inside

the medium. Show that the constant amplitude and constant phase surfaces o
the wave do not coincide with each other. Such waves are called inhomogeneous -
waves. Derive an expression for the Poynting vector inside the medium. ‘

5.3 Heat generation distribution due to absorption. A plane wave with an intensity
of 10 Wm~2 at 0.517 pm meets a gold surface at 30° of incidence. Determine
the heat generation distribution inside the gold specimen. The refractive index -
of gold at 0.517 pm is N = 0.608 + 2.12i.

5.4 Fresnel formula for TE wave. Derive the Fresnel formula for a transverse electric %

wave incident onto a plane surface, that is, eqgs. (5.73) and (5.74).

5.5 Transmissivity into an absorbing medium. If the medium is absorbing, one must ’

be careful in writing down the Poynting vector. Examining eq. (5.76) and.as-‘su.m- :
ing that only n; is complex, na + ik, derive an expression for the transmissivity,
using n, and & explicitly. v iz,
5.6 Interference effects in thin films—Color of thin film. Experienced workers in th.1n7
film deposition can tell the film thickness from its color. At 0.5 p.m, the refractive
index of SiOz is N = (1.46, 0) and that of siliconis N = (4.14, 0.045). Calculate
the reflectivity of a thin film of SiO, deposited on the silicon wafer for a film
thickness between 500 A and 2000 A at normal incidence. Mark down a few
colors you expect to see at normal incidence for a few film thickness values in
the given range. | .
5.7 Optical interference effects in thin films—Angle effects. A substrate coated with
a film may have different colors when looked at from different directions. At
0.5 pm, the refractive index of SiO; is N = (1.46,0) and that of silicon js
N = (4.14, 0.045). Calculate the reflectivity of a 500 A SiO, film deposited on
silicon wafer for the angles of incidence 0°, 30°, and 45°. 3
5.8 Critical angle of incidence for optical waves. For radiation going from a high’
refractive index medium into air, calculate the critical angle if the refractive index
of the medium is (a) 1.4 and (b) 3.5. b
5.9 Acoustic wave reflection and transmission—SH wave. For a transverse acoustic
wave polarized in the direction perpendicular to the plane of incidence (an SH.
wave), calculate the reflectivity and transmissivity of the wave at an interface
between two isotropic materials at the following angles of incidence: (a) normal,
(b) 15°, and (c) 60°. The materials’ properties are: material 1: p1 = 5.33 x 10°
kgm™3, vp1 = 3900 ms~!; material 2: p = 2.33 X 103 kgm™3, vrp = 6400
ms™L.
5.10 Reflection of electron wave. Calculate the reflectivity of a free electron with an

energy of 1 eV propagating toward a potential barrier with the following barrier 3

heights: (a) 0.2 eV, (b) 0.8 eV, (c) 1.5 V. :

5.11 Thermal boundary resistance. Estimate the thermal boundary resistance between
two materials with the following properties on the basis of the diffuse inter-
face scattering model: material 1: v; = 3900 ms™!, C; = 1.67 x 108
Jm=? K-!; material 2: v; = 6400 ms~!, C; = 1.66 x 106 Jm™® K7\

For a heat flux of 108 W m™2, estimate the temperature drop occurring at the E:

interface?
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5.12 Reflection of longitudinal acoustic wave. A longitudinal acoustic wave is incident
from medium 1 into medium 2. Derive an expression for the reflection and
transmission coefficients of the excited longitudinal and transverse waves as a
function of the angle of incidence. Both media are assumed to be isotropic and
their properties are: vr; = 6400 ms—1, vz = 8000 ms~!, p; = 2.3 x 103
kgm‘a; vra = 3900 ms™!, vy = 5000 ms™!, p2=53x% 10° kgm‘3. Use
Auld’s book (1990) as a reference for solving this problem.

5.13 Thermal boundary resistance at low temperature. Thermal boundary resistance
is a phenomenon that is important at low temperatures even for bulk materials
and becomes important even at room temperature in nanostructures. Treating
the transmissivity in eq. (5.92) as independent of angle and frequency, derive an
expression for the proportionality coefficient in eq. (5.93) at low temperatures.

5.14 Analogy of thermal boundary resistance for photons. Reflection of carriers can be
regarded as an additional resistance, as in the case of thermal boundary resistance.
Photons can be reflected at an interface too, as we discussed in this chapter.
Now we want to develop an analogy of thermal boundary resistance for photons
by considering a partially reflecting and partially transmitting interface located
between two parallel black walls maintained at temperatures T and T5. The
transmissivity of the interface is 715. Derive an expression for the net radiation
heat transfer exchange between the two walls, and a corresponding expression
for the photon thermal boundary resistance at the interface. In radiation, however,
we do not call such a phenomenon thermal boundary resistance.

.5.15 Interference in multilayer structures. Two layers of thin films are grown on

a silicon substrate. At the optical wavelength of 1 pm, the refractive index of
silicon is (3.6,0). The refractive index of the layer grown directly on silicon is
(2.4,0) and its thickness is 2000 A. The refractive index of the subsequentylayer is
(1.3,0) and its thickness varies in the range of 0.1-1 wm. Calculate the reflectivity
of the structure at the given wavelength, using the transfer matrix method, for
normal incidence.

5.16 Tunneling of electrons. For a potential barrier of height 1.0 eV, plot the transmis-
sivity of a free electron with an energy of 0.5 eV through the barrier for a barrier

. width ranging from 1 A to 50 A. e /

"S$.17 Tunneling of photons. A vacuum gap of 0.2 wm is formed between two glass

substrates. Plot the transmissivity of light from one glass substrate into another
as a function of angle of incidence for an incident TM wave with a wavelength
at 0.5 wm. The refractive index of the glass is taken as 1.46. Compare the results
with the situation if a thin film of glass, of 0.2 pm thick, is sandwiched within a
vacuum. :

5.18 Landauer formula for phonon heat conduction. A freestanding thin film of
thickness d is suspended between two thermal reservoirs at temperatures 711
and 7. The dispersion can be approximated as

. 1/2
- 2 2 nmw\2
w—v[kx+ky+(—d_) :I
Assuming that the phonon transmissivity is one and neglecting scattering, derive
an expression for the thermal conductance for heat conduction along the thin
film plane (x-direction). -
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5.19 Landauer formulation for electron thermal conduction. A metallic square
nanowire is placed between two thermal reservoirs at temperatures T and 75. 3
Assume that electron transmissivity is equal to one. Derive an expression for the
thermal conductivity of the nanowire contributed by the electrons. &

5.20 Coherence length of blackbody radiation. Estimate the coherence length of a &
blackbody radiation source at 10 K and 300 K. ;

5.21 Coherence length of laser radiation. Estimate the coherence of a laser radiation '
with a central wavelength of 1.06 pm and a spectral width of 10 A k

5.22 Coherence properties of electrons. At low temperatures, the Fermi velocity in
a materal is 2.76 x 10° ms™!, the electron relaxation time is 3.8 ps (1 ps = 3
10~125), and the phase-breaking time is 18 ps. Calculate the mean free path and
the phase coherence length of an electron. :

*5.23 Phonon group velocity. The phonon dispersion for a monatomic lattice chain is 3

[K k
w=2/— &
; m

Derive an expression of its group.velocity. Prove that the group velocity at the
zone boundary is zero. , B
5.24 Difference between wave and particle approaches (project type). In section 5.6
we stated that wave optics and geometrical optics do not lead to the same 3
results for the radiative properties of periodic multilayer structures for blackbody
radiation. Consider a periodic structure made of two alternating layers with 3
refractive indices of (4,0) and (2,0), that is, nonabsorbing films. Blackbody
radiation at 1000 K comes toward the periodic multilayer structure at normal
incidence. Assuming both sides of the multilayer structure are vacuum, calculate
the reflectivity and transmissivity averaged over the blackbody spectrum for the
following cases, using wave optics and ray tracing:
(a) For each layer thickness of 1 pm, 10 m, and 100 pm calculate the variation =
of reflectivity and transmissivity as a function of the number of periods in the f:
structure. Compare the results for wave and ray tracing. ;
(b) For 10, 100, 1000 periods, calculate the average reflectivity and transmissivity
as a function of the thickness of each layer, assuming all layers are of equal thickness,
for the layer thickness range of 1 pum to 100 pm.
Geometrical optics can be obtained using the following recursive formula for the
addition of every interface (Siegel and Howell, 1992, p. 928)

R, T,% - _ TmTa
=Bk "% T=ReR,
where the subscript m refers to the total reflectivity and transmissivity of the
first m interfaces (counted from the incident side) and » represents those of the
subsequent » additional interfaces. For example, for one layer with two interfaces
(the reflectivity and transmissivity at the first interface are R; and t; and those
at the second interface are R; and 73}, the above formula becomes

6

Particle Description
of Transport Processes: Classical Laws

We discussed in the previous chapter when we can ignore the coherence effects and
treat heat carriers as individual particles without considering their phase information.
In the next few chapters, we will describe how to deal with energy transfer under the
particle picture. Most constitutive equations for macroscale transport processes, such
as the Fourier law and the Newton shear stress laws, are obtained under such particle
pictures. These equations are often formulated as laws summarized from experiments.
In this chapter, we will see that most of the classical laws governing transport processes
can be derived from a few fundamental principles.

In chapter 4, we studied systems at equilibrium and developed the equilibrium
distribution functions (Fermi-Dirac, Bose—Einstein, and Boltzmann distributions). The
distribution function for a quantum state at equilibrium is a function of the energy of the

: guantum state, the system temperature, and the chemical potential. When the system
is not at equilibrium, these distribution functions are no longer applicable. Ideally, we
would like to trace the trajectory of all the particles in the system, as in the molecular
dynamics approach that we will discuss in chapter 10. This approach, however, is not
realistic for most systems, because they have a large number of atoms or molecules.
Thus, we resort to a statistical description of the particle trajectory.

In the statistical description we use nonequilibrium distribution functions, which
depend not only on the energy and temperature of the system but also on positions
and other variables. We will develop in this chapter the governing equations for the
. ‘monequilibrium distribution functions. In particular, we will rely on the Boltzmann
- tquation, also called the Boltzmann transport equation. From the Boltzmann equation

- we will derive familiar constitutive equations such as the Fourier law, the Newton shear
. Stress law, and the Ohm law. We will also demonstrate that conservation equations,

Rn+m = Rm +

Ryt} N
e S R T

Hint: one numerical problem with the transfer matrix method for thick film
is that the exponential function may blow up. One must find ways to solve this
problem for calculating thick films using the transfer matrix method.

Ri+1=Ri1 +
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such as the Navier-Stokes equations for fluids and electrohydrodynamic equations for 3 p®
charged particles, can be obtained from the Boltzmann equation. Special attention will 4

be paid to the approximations made in these derivations, which will be relaxed in the next BONCY
chapter when we consider various classical size effects. A discussion is also presented att=0

in this chapter on thermal waves and their appropriate descriptions.

6.1 The Liouville Equation and the Boltzmann Equation

(.
Y=

We discussed, in chapter 4, the probability distribution of an equilibrium syste
occupying a specific accessible quantum state. Because the system is at equilibrium,
the probability distribution take a simple form. For example, the Boltzmann distribution
depends only on the energy of the quantum state and on the system temperature. Transport.
occurs, however, only when the system is in a nonequilibrium state and consequently
the equilibrium distribution can no longer describe the state of the system. Conceivably,
to describe the state of such a nonequilibrium system, more information is needed. In
this section, we will introduce nonequilibrium distribution functions that describe the
states of systems and the governing equations for the evolution of the nonequilibrium,
distribution functions. We will start from the general Liouville equation, which is
valid for all classical systems but is difficult to solve, and move on to the simpler
Boltzmann equation that serves as the basis for our future analysis. We will also discuss’
the assumptions made in the Boltzmann equation and see, consequently, its limitations;

e— Figure 6.1 Phase space, and an ensemble
AR in the phase space.

such an ensemble never intersect, so that the flow lines in phase space do not intersect
each other.

The number of systems in an ensemble is usually very large, much larger than the
number of the particles in one system. Because of the large number of systems in one
ensemble, we can treat the points of the ensemblé, each representing one microstate of
the original macroscopic system, as forming a continuum in the phase space, just as
we treat atoms or molecules in a macroscopic system as a continuous medium in real
space. We define a particle density f™) such that, surrounding any point (r®, p™)
in the phase space, where r® = (r1, 12, ..., ry) = ¢W, r@ ;@ ) includes
all the space coordinates of N particles and similaﬂy p™ represents all the momentum
coordinates, the number of systems is : '

6.1.1 The Phase Space and Liouville’s Equation

Consider a system with N particles, where each particle can be described by the No. of systems = f ™)z, ™, p®)yAr® Ap®™ 6.1)

generalized coordinate r and momentum p. For example, the generalized coordinates.
of a diatomic molecule, ry, include the position (x1, y1, z1), the vibrational coordinate’
(the separation between the two atoms, Axp), the rotational coordinates (polar and:
azimuthal angles, 68; and ¢); likewise, the generalized momentum, p;, includes the:
translational momenta (mvy(, mvy1, mv,1), the vibrational momentum proportional to’
the relative velocity of the two atoms (md Ax1/dt), and the rotational momenta (angular
momenta of rotation corrésponding to 8 and ¢ directions). We assume here that there are
m degrees of freedom in space, that is, m generalized spatial coordinates, and m degrees.
of freedom in momentum for each particle. The number of the degree of freedom of the’
whole system is 2n = 2m x N. These 2n variables form a 2n-dimensional space that
called a phase space. The system at any instant can be described as one point in such
a space. The time evolution of the system, that is, the time history of all the particles.
in the system, traces one line in such a 2n-dimensional phase space, which we will ca
the flow line as in fluid mechanics.

Now we consider an ensemble of systems—a collection of many systems satisfying
the same macroscopic constraints—as we did in chapter 4. At time ¢ = 0, each syste
in the ensemble is represented by a different point in the phase space, as shown i
figure 6.1. From classical mechanics, we know that with a given initial condition the’
trajectory of the system is uniquely determined. Since the initial condition for each.
system differs from that of other systems in the ensemble, the traces of systems in;

in a small volume of the phase space, Ar™ Ap®™, where Ar™ = ArjAr, ... Ary =
ArDAr@ . Ar®™ and Ap™ = ApiAp;...Apy = ApWap® .. Ap™). We
use superscript (n) to denote the generalized space and momentum coordinates, and
superscript (N) to represent the N particles. The particles density in the phase space
f (fv Y, p™, p™) is called the N -particle distribution function, which feprescnts
the probability density of finding a particular system at a specific state defined by r®
and p™. If we assume that the ensemble is ergodic for all time, this distribution function
a}so_represents the probability of observing one system at a particular state r® and p®
over a period of time (such a time period should be smaller than the characteristic time
We use in tracing the trajectory, or the relaxation time that we will discuss later).

The time evolution of Mz, ™, p™)y in the phase space is governed by the
‘Liouville eqyation, which can be derived on the basis that the flow lines of systems in
. the ensemble do not intersect. Consider a tube formed by the traces of a set of points (a
\ §ubset of systems in the ensemble) as shown in figure 6.1. Since the flow lines do not
Intersect, the points in the phase space are conserved. We want to derive an equation
fﬁr the distribution function f®) based on this conservation requirement. Recall that
in ﬂ.uid mechanics or heat transfer, we often iise the control volume method rather than
Iracing the trajectory of individual fluid particles. We could do the same for the points in
phase space and examine a small control volume in phase space, as shown in figure 6.1.




